

Team 1:

Indoor Multi-camera Tracking System
Critical Design Review

Industry Advisor: B.Eng. Lui Tai

Supervisor: Prof. Costas Armenakis

December 04, 2017

Kevin Arindaeng (213094016)
Ariel Laboriante (212951984)
Zhuolin (Jack) Lu (212848834)

Varsha Ragavendran (213193065)

Link to Video:

https://youtu.be/u9b5l6OfDpA

https://youtu.be/u9b5l6OfDpA

TABLE OF CONTENTS

1. Scope 3

2. Testing Process and Requirements 3
2.1 Setup 3
2.2 Identifying an object of a particular color 4
2.3 Tracking the object and identifying the precise location 4

3. System Block Diagram 4

4. Critical Analysis 5
4.1 Addressing questions from PDR 5
4.2 Strengths, limitations, and recommendations for improvements 6

4.2.1 Strengths 6
4.2.2 Limitations 6
4.2.3 Recommendations for improvements 7

4.3 Changes to the PDR plan as a result of prototyping activity 8
4.4 Questions generated during prototyping 8

5. Detailed Theory 9
5.1 Vision algorithm 10

5.1.1 Camera orientation 10
5.1.2 Camera model and camera calibration 10
5.1.3 Image acquisition 11

5.1.3.a Marker detection 11
5.1.3.b Object recognition 12

5.1.4. Image processing of epoch by epoch solution 13
5.1.4.a Position calculation 13
5.1.4.b Image matching 15
5.1.4.c Epipolar geometry 16

5.2 Post-processing and post-estimation 17
5.3 Experimental results 17

6. Refined Project Schedule 18
6.1 Risks 19

7. Adjusted Expenses Tables 20

8. Self-Evaluation of Critical Design Review (Rubric) 22

9. References 24

10. Appendix 25

2

1. Scope

The goal of this project is to provide real-time navigation for autonomous mobile robots
used in shipping warehouses. The U-Trackr system will fulfill the need for employee safety,
increased productivity, and reduced company expenses allocated to damaged robots. Our
key objective is to locate the position of the robot vehicle indoors, where GPS is unreliable,
using only the image sequences of a limited camera system. As we build on our prototype,
we aim to improve our system to also locate surrounding obstacles, predict the path of any
collisions, notify the vehicle of any oncoming collisions (through vibrations or sound), and to
predict the correct path to avoid collision. Our design includes the hardware, framing, and
software of our camera-based system. However, the automation and design of the robot
vehicle are outside of our system. We are assuming that our customers would be utilizing
our system for their own robots. Therefore, the control of the robot’s trajectory is beyond the
scope of our project.

2. Testing Process and Requirements

Before prototyping, our team set out the vision of the prototype, outlining the functionalities
of the system, the factors to consider, and a breakdown based on the design developed in
the Preliminary Design Review document. Our team took an iterative approach to split our
objectives into smaller states.

Thus, the prototype phase of this project was split into three solutions:

 Figure 1. Solution scopes: 1. Setup, 2. Identify, 3. Track

2.1 Setup

In this phase of the prototype, our goal was to have the Raspberry Pi camera working with
the microcontroller. We were unsure whether the video feed that would be received to our
tracking program would have any significant impact to our system in terms of time delays.

3

https://www.draw.io/?scale=2#G1WvXVXdmkk3kf1i6R3nsT_hFZ7gXpfruP

In order to verify that such an issue is not present, we set up a server that could display the
video recordings of the camera at real time. The cameras were set up, and programmed to
record the video and feed the videos at real time to the server. By feeding to the server, we
were able to verify that the feed of the camera to the server was almost close to real time.

2.2 Identifying an object of a particular color

The objective of this phase was to identify an object from each frame of the camera
recording and add a marker on the target object. Since we were using a tennis ball to test
this phase, we programmed a script to analyze each frame from the recording and locate an
object based on color. The purpose of the marker was for us to verify that the program was
identifying the correct object. In our case, the marker on the ball was a form of verification
that the program was executing correctly.

2.3 Tracking the object and identifying the precise location

In this phase, our goal was to have our system track the object as it is moved around within
the area of coverage of the cameras. To meet the requirements of this object, we
programmed our scripts to collect data of the object’s position with respect to the X and Y
axis. As we changed the object’s position, the marker on the target also moved along with it.
The markers were then used to collect the data. The feed to the server allowed for us to
verify that the marker moved as the ball moved. Therefore, the program was executing
correctly and we were able to track an object in motion.

3. System Block Diagram

 Figure 2. System diagram of the indoor multi-camera tracking system. *Robot vehicle is outside the system.

4

4. Critical Analysis

4.1 Addressing questions from PDR

How can we determine the variables such as the camera angle, height, the frame of axis and
the position of the camera system?
While prototyping, we realized that the placement of all four cameras were not on the same
height level. We did not account for this factor, and placed all four cameras on the frame,
based on what we thought was the same level. To resolve this issue, we could attach a
displacement sensor to each microcontroller in order to identify and verify that all four
cameras are at the same height, and are consistent. The angles of the cameras were also
not accounted for, therefore there exists a slight variation between the recordings from one
camera to another. However, the Raspberry Pi Zero modules that were purchased came
with a case that allows for the cameras to be placed within. This could help resolve this
issue provided the cameras are all placed at the same height.

How can we track motion and how do we translate the movement into usable data?
Our prototype currently identifies an object based on the color of the object. As this object
moves within the area the camera covers, a script has been programmed to track this object
per frame. Therefore, as displayed in our prototype video, a marker on the object moves as
this object moves. The X and Y axis of the object at starting position and object at ending
position is recorded. The system will be further expanded to also record the Z axis position
to support other uses. This data can be used when modelling the movement of the object
and predicting collision.

Do we need a main microcontroller? And does it have to be in the center of the frame?
Our prototype currently does not have a main microcontroller in the center of the frame as
was designed in the Preliminary Design Review document. We initially included the main
microcontroller to manage all four cameras to retrieve and send the video recordings at a
consistent pace. While prototyping with just four cameras, where each camera was sending
its own recording to the server, we realized that the processors of the Raspberry Pis were a
lot slower. The more tasks programmed within the controller, the slower the processing
power of the Raspberry Pi. This also affects the rate at which the recordings are fed to the
server. As displayed in the prototype video, there exists a delay due to this. Therefore, we
might need a main microcontroller to act as the system’s task manager and reduce the
overhead.

How important is the camera frame rate important for image-processing?
This is the most critical part of our project. Since we are predicting if a collision will occur
between two objects, it is important to have a fast camera frame rate, which will allow for
images to be processed quickly, and model to predict collision. The camera frame rate of the
Raspberry Pi is not great and is a limitation, but it is sufficient for the prototype phase.

5

How can we make our system portable?
Our prototype currently supports portability. Frames have been assembled using removable
connectors. This ensures that the area for the coverage by cameras is consistent at all times.

4.2 Strengths, limitations, and recommendations for improvements

During the prototype phase, we realized that our design from the PDR is not entirely
sufficient to have a well-rounded system, as expected. Although a couple of strengths were
identified from the prototype, several limitations have arised. These limitations allow us to
reconsider factors when implementing and developing the final system.

4.2.1 Strengths

Program has the ability to determine the location of the target object quickly based on
color.
Provided there are no other objects with the same color, our system is able to quickly
identify the target object. We considered this to be one of the strengths of the project
as quick identification speeds up the initial process and collects the required data
quickly to provide a real-time prediction of collision.

Portable frames which can be easily assembled to ensure area of coverage is same
throughout the process of implementation and develop.
The process behind building the frame was to ensure that the system is portable and
easily fixable at different locations. This is also considered to be one of the strengths of
the project as it allows our system to be adaptable to various environments.

4.2.2 Limitations

Lag/Delay by approximately 2-5 seconds when feeding video to the server.
This factor is mainly due to the processor of the Raspberry Pi. Since several tasks were
being accomplished by the controller, the processor speed decreases thereby causing a
lag when the video recording was being fed to the server. Another possible source of
delay could be from environmental factors such as the overload usage of WiFi.

The quality of the videos, in terms of resolution and frame rate, is low. The coverage
range of this camera is also not sufficient for our project.
Depending on the processor, the video can have low pixel quality and resolution. This
affects our system in terms of identifying the position of the target object(s) and directly
affects lag and delay. The camera’s limited field of view (horizontal and vertical) affects
the reference space on which our system is defined.

The RGB Raspberry Pi cameras cannot detect objects under poor or low lighting.
Like any other cameras, the RGB Raspberry Pi camera module cannot detect objects in
the dark. Therefore, the system is light dependent and restricted by low light setting.

6

As more tasks are programmed onto the microcontroller, the processing power
decreases, thereby affecting the rate of data transmission, thus causing lag.
As mentioned earlier, the main microcontroller was not implemented, but it was initially
intended to synchronize all four cameras and feed video recordings from each camera to
the server. Each microcontroller currently tries to accomplish this task on its own, which
affects the processor speed and causes delays.

Currently our prototype only supports detection of one object in motion. This is to be
further improved down the road to support at least two if not more objects in motion, in
order to predict collision.
The system only identifies one target object based on color. In order to predict collision
between at least two or more objects, the system should be able to identify more than
one object. This is part of the scope of the project which has not been implemented in
the prototype.

Prototype does not differentiate between objects. Currently prototype identified objects
based on color. This is to be further improved down the road, in order to be able to
different between objects and/or people.
System has not been programmed to differentiate between objects. This feature would
be useful if the project’s scope was further expanded to communicate with the object in
motion to correct its path, in order to prevent collision between this object and other
environmental constraints, objects, or people.

The regulatory requirements of the system complying with the workplace safety and
insurance board (WSIB) policies, and the Worker Health and Safety - Ontario Ministry
of Labour policies, restricted our prototype to be performed with an inanimate object
(tennis ball).
The purpose of our system is to track objects in motion and predict collision within a
manufacturing plant. Due to the regulatory requirements identified from the Preliminary
Document Review, our prototype was restricted to testing a tennis ball.

4.2.3 Recommendations for improvements

● We need to have a consistent field of view for the cameras, and to retrieve accurate
coordinates, all cameras have to be placed at the same height level on the frame.
Displacement sensors can be attached to each microcontroller to detect the height
and distance between each microcontroller.

● The variation in delay with feeding the video to the server was mainly due to using
various versions of the Raspberry Pi. We realized that the processor on the
Raspberry Pi 2 Model B is a lot better and supports real time (~2second delay) with
regards to tracking a moving object. Therefore, it might be necessary to be consistent
across the board with either Raspberry Pi 2 Model B modules or Raspberry Pi Zero
modules.

7

● Although the Raspberry Pi camera is sufficient for the prototyping phase, a camera

with better resolution and frame rate will provide accuracy and less time delay with
regards to covering more area, identifying precise location of objects, and feeding the
videos to the server. Also, a camera that could operate and detect objects in the dark
would be a favorable factor to consider.

● The Raspberry Pi currently detects objects based on color, and future improvements
should include differentiating between objects and/or people. This would broaden
the scope to support various objects and will not have a conflict when two objects of
the same color are nearby.

4.3 Changes to the PDR plan as a result of prototyping activity

There have been no changes with regards to the scope of the system. However, to produce
accurate results, our team will be executing most of the recommendations stated previously.
This includes incorporating the use of displacement sensors to ensure that all the cameras
are placed at the same height on the frame, staying consistent across the board by using the
same model of the Raspberry Pi, and researching for better cameras that will provide a
better resolution and frame rate.

4.4 Bottlenecks

There are currently four bottlenecks with the project:
● The microcontroller’s processing power must ensure little to no delay when feeding

the video recordings to the server and carrying out multiple tasks on the same
controller.

● Synchronizing all four cameras to determine the accurate location of the objects
● Performing position calculation on images to determine precise location of the

objects
● Modelling these objects to determine and prevent collision, if the objects are very

close
The key question we need to resolve is how to program with OpenCV to analyze all
recordings from all four cameras to pinpoint the exact location of the objects. Each camera
would have to feed the video recording to the server with a timestamp, which allows for
OpenCV to compare this video recording with recordings from the other cameras. We can
then performing position calculation on the images from various angles to pinpoint the exact
location of the objects. Since the team has not worked with OpenCV before, applying
position calculations on images being processed using OpenCV is a hurdle to overcome.

4.4 Questions generated during prototyping

● How will the program react if more than one object is present in the area covered by
the camera, i.e. if more than one object is in motion, how will the system know which
object to track?

● If the camera is able to operate and view objects in motions in the dark, how will it
detect an object of a particular color?

8

● What is the approximate time estimate between the start time of the video recording

from the camera to when the modelling in real-time predicts collision?

5. Detailed Theory

Tracking systems are crucial because they provide a way of finding the position of an object
and deriving the motion and direction. Our system is needed when it comes to obtaining the
real-time location of a 3-dimensional object in a 2-dimensional image plane. The
image-based tracking system developed in this project is comprised of the multi-camera
system, computer, microcontrollers, and processing software. In this section, the theory, the
methodology behind the vision algorithm, the processing software, and the indoor
multi-camera tracking system will be explained in detail.

Figure 3. Multi-camera Tracking System: The theories related to each aspect of the definition space.

9

5.1 Vision algorithm

This section presents the vision algorithm for the pre- and post-image processing of the
camera system as well as the implementation of the cameras network and the bottleneck
technology restricting the indoor multi-camera tracking system.

5.1.1 Camera orientation

The multi-camera tracking system consists of four Raspberry Pi camera v2 modules
installed at each corner of the frame and attached with the Raspberry Pi
microcontrollers. The data acquisition and transmission of data is done through the
microcontrollers to reach the main processing board of the computer. The frame of
the indoor system has the dimensions 0.762 m X 0.762 m X 0.762 m (or 2.5 ft X 2.5
ft X 2.5 ft). The tilt angles of the cameras have been adjusted to 45 degrees, and the
camera itself has a 62.2 degrees horizontal and 48.8 degrees vertical field of view
(as per the specification of the camera attached in the Appendix). This way, each of
the individual cameras can track all the motion within the defined space. The
following diagram is a model of our camera system.

Figure 4. Designed Camera Network: The cameras placed on the frame provide an overdetermined
system where the positioning of two cameras can be checked by other cameras through statistical
analysis.

5.1.2 Camera model and camera calibration

The basic model of a pinhole camera describes the relationship between mapping in
3D world to 2D image. The 2D image is represented by a 3 by 4 homogeneous
camera projection matrix with 11 degrees of freedom to correlate the 2D image to a
3D object. These parameters include three translations, three rotations, one principle
point, two pixel dimensions and two skew parameters [3]. The following equation
represents this relationship.

10

The camera calibration procedure estimates the camera projection matrix. The
calibration is assumed to be negligible and the cameras are assumed to be in factory
quality (the specifications of the Raspberry Pi and Raspberry Pi camera module v2
are provided in the Appendix). In other words, there is no projection matrix caused
by the camera system since in prototyping, the accuracy of the system does not
matter as much. Alternative ways for camera calibration can be done using the
calibration toolbox provided by the MATLAB database.

5.1.3 Image acquisition

The image acquisition of the project is considered to be the bottleneck technology
since the input rate of image data has a direct correlation on the output position of
the object being track. This part of the project is accomplished by first detecting the
object colour marker to provide the 2D-image position, and then recognizing the
object in the frame of reference.

5.1.3.a Marker detection

Marker detection is the extraction of distinct colours in the image given by the
camera. The marker must be distinguishable and have different features than its
surroundings. For this project, the software used to detect RGB colour space have a
range of (256,256,256) for each colour. The colour selected for detection is in the
range of green. Any other sources of green colour produced by the surrounding can
affect the detection of the marker [4]. The use of yellow light is also not
recommended as yellow light interferes with the selected marker colour and thus
does not allow the OpenCV program to operate. Another issue due to lighting is
when the room is too dark, the threshold DN value of green cannot be detect.

11

The DN value threshold refers to the maximum and minimum values that the
program needs to detect the colour “green”.

This value is defined in the code by greenLower = (29,86,6) and greenUpper =
(64,255,255). Once the marker is detected, the object can be recognized, and the
position of the object is defined in the 2D image space [4].

Figure 5. Marker Detection: The image on the left is not detected, and this can be interpreted two ways.
First, the ball has a green DN value threshold outside the one previously stated. Second, the lighting
caused the image on the right to appear in view of the camera and the ball was detected.

5.1.3.b Object recognition

The object recognition is the detection of the object’s colour marker and the
provision of the positional coordinate of the object. The OpenCV program recognizes
objects with the green colour marker. It creates a circle with a set radius around the
object and a red mark at the centre of its position. The object being recognized does
not have to be a circle, but in the case of this project, the centroid position of a circle
is the easiest to program. The position of the object is defined with respect to the top
left of the reference image, where it is set as coordinate (0,0). From there the center
of the ball is defined and the output is created in the form of a .txt file. The .txt file
allows for post-processing of the data to convert it to 3D real-world position [2].

Figure 6. Object Recognition: The tested tennis ball has a defined XY coordinate system with respect to
the image frame. The set radius of the ball is defined.

12

Figure 7. Sample output of the system: The file is formatted with the time, position, and radius of the
circle from the centroid.

5.1.4. Image processing of epoch by epoch solution

The image processing of the project defines the calculation of the image matching,
position calculation and epipolar geometry. This allows for the transformation of 2D
images into 3D real-world positions.

5.1.4.a Position calculation

The position calculation must be completed to transform 2D image space into 3D
cartesian coordinates. This is done using several predefined parameters such as the
position of the camera (h,d), the tilt angle of the webcam towards the horizontal α
and the perpendicular distance to the webcam lens of the objects when it is captured
dZ0 [1].

Figure 8. Sketched Position Calculation: Here the object is defined as a rectangular figure. In the project,
the object is a circle.

13

14

5.1.4.b Image matching

Image matching is the process of selecting a matching entity from one image to find
the conjugate entity in another overlapping image. There are two common methods
of image matching: area-based matching (ABM) and feature-based matching (FBM).
The area-based matching is the process of matching gray level distributions in a
small area of two stereo-paired images. The similarity measure between image
patches can be computed using the cross-correlation coefficient and least square
matching of 1D and 2D. From there, the template window created from the first
image (which has the similarity measures) is matched with the search window of the
second image to find that area on the second image[2].

Figure 9. Area-Based Image Matching: The matching of template from one image with similar measure
to the second image within the search window.

Feature-based matching is the extraction of features such as points or line from the
images being compared. The feature similarities can be defined by the shape, size,
length, curvature and the gradient across the edge of an image [2]. Feature-based
matching is usually used prior to the earlier stage of image processing or before the
detection of the markers whereas area-based matching is used after object
recognition and marker detection where a template search window can be created
from the recognized object. Since image matching is not part of the bottleneck
technology as it requires images first, this part was not implemented in the Critical
Design Review.

15

5.1.4.c Epipolar geometry

The epipolar geometry is the geometry between two cameras which consists of an
epipole e' (the point of intersection of the line joining the camera center), an epipolar
plane Hπ (a plane containing the baseline), an epipolar line I' (the intersection of an
epipolar plane with the image plane). This relationship is demonstrated by the figure
below.

Figure 10. Epipolar Geometry Relationships: Note that the two images must have matching features or
area to perform epipolar geometry.

The red line formed with the wooden stick both image shows the relationship of
similar feature and geometry needed to epipolar calculation.

Figure 11. Epipolar Geometry of Tennis Ball Feature: Red line indicating the epipolar line.

The epipolar geometry used for tracking corresponds to the least square adjustment
condition. The condition states that the blenders are minimized to calculate 3D
position [3].

16

5.2 Post-processing and post-estimation

The post-processing and post-estimation of the project analysis is done on the final output
results of each camera and through series of statistical test, the correlation and accuracy of
the network can be determined. This part of the project is not a bottleneck technology, so it
was not included in our prototype. The indoor tracking system only works with two
Raspberry Pi camera modules so an overdetermined network cannot be accomplished.
Thus, the post-processing and post-estimation cannot be done due to too many unknown
variables.

5.3 Experimental results

The following is a sample demonstration of the tracking motion and position calculation over
time. The raw data can be found in the Appendix.

Figure 12. Motion of A Ball rolling: Note the output (x,y) coordinates are given in .txt file.

17

Figure 13. Position Calculation of (X, Y) Coordinates Over Time: The graph shows the motion over time of the
tennis ball in one and a half cycles or from one end to the other and back.

6. Refined Project Schedule

A breakdown of scheduled tasks and resources can be found below. This can also be seen
using Microsoft Project with various views by following the link.

Figure 14. Resource Allocation

18

https://drive.google.com/file/d/1SYuQ1dxyf9Upb1ELD-uKnINsYvNxJyFv/view?usp=sharing

Figure 15. Gantt Chart View of the Project Schedule

6.1 Risks

Some of the associated risks that may happen throughout the life-cycle of the project within
the Test Readiness Review (TRR) are as follows:

Delay in the shipment of the new expenses: Since this is the major predecessor of all of the
major tasks, this has the risk to delay most of the project.

Faulty equipment ordered: If the microcontrollers are not able to interface as they are
expected to, it would delay the development of major features such as the position
calculation and the autonomous rover.

19

Possible damage due to collision testing: While developing the feature to prevent collision
events, collisions are expected to occur on the autonomous rovers, causing possible
equipment damage.

Possible loss of functionality when converting the original prototype to the new
microcontrollers: The new microcontrollers may interface differently with the camera
modules, causing some features from the prototype developed on the CDR to not work. This
may require reimplementation which has the risk of delaying the project.

7. Adjusted Expenses Tables

Table 1: TRR Expenses Table for U-TRACKR

Deliverable
Area

Item (Problem
Space) Item (Solution Space) Estimated

Cost
Actual
Cost Description

TRR

Microcontroller
(x4) BeagleBone Black (x4) ($87.00 * 4) =

$348 TBD

Controls and
processes
information from the
camera modules.
Needs to have
strong processing
power to read and
write data quickly to
as server.

Cameras (x4) Pixy CMUcam5 (x4) ($94.48 * 4) =
$377.96 TBD

Takes
high-definition
videos in real time
for vision based
tracking. Needs to
have high frame rate
to keep up with
photogrammetry
calculations.

Programmable
Land Rover (x2)

Adafruit DC & Stepper
Motor HAT for Raspberry

Pi

($29.99 * 2) =
$59.98 TBD Used as a payload to

track, as well as
prevent collisions
towards each other.
The previous
Raspberry Pi
microcontrollers will
be used to create
this.

Brass M2.5 Standoffs for Pi
HATs - Black Plated - Pack

of 2 (x2)

($6.49 * 2) =
$12.98 TBD

Mini Robot Rover Chassis
Kit - 2WD with DC Motors

($42.99 * 2) =
$85.98 TBD

TRR BUDGET = $750
TRR TOTAL ESTIMATED EXPENSES = $884.90
TRR ACTUAL EXPENSES: TBD

20

https://beagleboard.org/black
https://www.amazon.ca/Beagleboard-BBONE-BLACK-4G-BeagleBone-Rev-C/dp/B00K7EEX2U/ref=sr_1_1?s=electronics&ie=UTF8&qid=1512420231&sr=1-1&keywords=beaglebone
http://www.cmucam.org/projects/cmucam5
https://www.amazon.ca/Pixy-CMUcam5-Smart-Vision-Sensor/dp/B00IUYUA80
https://www.adafruit.com/product/2348
https://www.adafruit.com/product/2348
https://www.adafruit.com/product/2348
https://www.amazon.ca/Adafruit-Stepper-Motor-HAT-Raspberry/dp/B00TIY5JM8
https://www.adafruit.com/product/2336
https://www.adafruit.com/product/2336
https://www.adafruit.com/product/2336
https://www.amazon.ca/Adafruit-Accessories-Brass-M2-5-Standoffs/dp/B00XW2KO4K
https://www.adafruit.com/product/2939
https://www.adafruit.com/product/2939
https://www.amazon.ca/Mini-Robot-Rover-Chassis-Kit/dp/B01ABJ4P6E

Table 2: Updated CDR Expenses Table for U-TRACKR

Deliverable
Area

Item (Problem
Space) Item (Solution Space) Estimated

Cost
Actual
Cost Description

CDR
(Prototype)

Microcontroller
(x4)

Raspberry Pi Zero (x2)

Raspberry Pi Zero W
Starter Kit with Case (x2)

($34.99 * 2) =
$69.98

($49.99 *
2) =

$99.98

Controls and
processes
information from the
camera modules.
(Two Raspberry Pi
modules are
provided by the
team for
prototyping)

Cameras (x4) Raspberry Pi Camera
Module V2 (x4)

($30.99 * 4) =
$123.96

($30.99 *
4) =

$123.96

Takes
high-definition
videos in real time
for vision based
tracking.

Frame

PVC Pipes and Fittings
PVC Pipes

($8.73 * 2) =
$17.46 $26.40

Holds the camera
modules in opposite
and equidistant
positions.

T-Connectors (x8) - $15.04

45° Connectors (x16) - $25.28

Dust Masks - $2.50

Spray Paint - $11.99

CDR BUDGET = $250
CDR TOTAL ESTIMATED EXPENSES = $211.40
CDR ACTUAL EXPENSES: $305.15

21

https://www.raspberrypi.org/products/raspberry-pi-zero/
https://www.amazon.ca/CanaKit-Raspberry-Wireless-Starter-Official/dp/B0727VRM14/ref=sr_1_1?ie=UTF8&qid=1512401512&sr=8-1&keywords=CanaKit+Raspberry+Pi+Zero+W+%28Wireless%29+Starter+Kit+with+Official+Case+%28CA%29
https://www.amazon.ca/CanaKit-Raspberry-Wireless-Starter-Official/dp/B0727VRM14/ref=sr_1_1?ie=UTF8&qid=1512401512&sr=8-1&keywords=CanaKit+Raspberry+Pi+Zero+W+%28Wireless%29+Starter+Kit+with+Official+Case+%28CA%29
https://www.amazon.ca/CanaKit-Raspberry-Wireless-Official-Supply/dp/B071DVLBC1/ref=sr_1_1?s=electronics&ie=UTF8&qid=1508720738&sr=1-1&keywords=raspberry+pi+zero
https://www.raspberrypi.org/products/camera-module-v2/
https://www.raspberrypi.org/products/camera-module-v2/
https://www.amazon.ca/gp/product/B01ER2SKFS/ref=oh_aui_detailpage_o04_s00?ie=UTF8&psc=1
https://www.amazon.ca/gp/product/B01ER2SKFS/ref=oh_aui_detailpage_o04_s00?ie=UTF8&psc=1
http://www.homedepot.com/p/2-in-x-10-ft-280-PSI-Schedule-40-PVC-DWV-Plain-End-Pipe-531137/100161954
http://www.homedepot.com/p/2-in-x-10-ft-280-PSI-Schedule-40-PVC-DWV-Plain-End-Pipe-531137/100161954

Table 3: Updated Common Expenses Table for U-TRACKR

Deliverable
Area

Item (Problem
Space) Item (Solution Space) Estimated

Cost
Actual
Cost Description

All
Deliverable

Areas

Primary
Processing

System
Personal Laptop - -

Tracks, locates, and
models the moving
object(s)
programmatically
using image
sequences.
(Provided by the
team for
prototyping)

Portable Power
Supply for

Microcontrollers
(x4)

USB Power Banks - -

Provides an external
power source for the
microcontroller.
(Provided by the
team for
prototyping)

COMMON TOTAL ESTIMATED EXPENSES = $0
COMMON ACTUAL EXPENSES: $0

8. Self-Evaluation of Critical Design Review (Rubric)

RUBRIC CRITERION FOR
CDR

SELF-EVALUATION
RANKING

OUR JUSTIFICATIONS

Apply an iterative process to
refine or assign solutions for a
given engineering design
problem.

Meeting criterion (3/4): Applies
an appropriate number of
iterations to refine or assign
solutions for a given
engineering design problem.

The objective of the prototype
was broken down into smaller
portions to accomplish the
chosen engineering design
problem.

Integrate design subsystems
into a complete system.

Meeting criterion (3/4): Elegant
integration of design
subsystems into a complete
system.

All subsystems have been
identified in the block diagram
and the video describes the
building process in great detail.

Justify the strength and
limitations of the solution and
make recommendation for
possible improvements.

Exceeding criterion (4/4):
Critical evaluation of the
strengths and limitations of the
solution; makes effective
recommendations for possible
improvements.

Every strength and limitation
of the prototype identified has
a clear rationale behind the
category. Recommendations
have been provided to improve
the project based on factors
such as time, efficiency, etc.

22

Incorporate appropriate
considerations of ethical,
social, environmental, legal,
and
regulatory factors Into an
engineering design.

Meeting criterion (3/4):
Incorporates key appropriate
and adequate consideration of
ethical, social, environmental,
legal, and regulatory factors
into an engineering design.

Regulatory requirements
identified in the PDR system
requirements section has been
thought of while developing
the prototype. Furthermore,
new environmental constraints
have been identified through
the process of developing the
prototype.

Develop concise and coherent
reports and design documents
that reflect critical
analysis and synthesis.

Exceeding criterion (4/4):
Writes concise and coherent
reports and design documents;
presents critical analysis and
synthesis of information in a
complete and compelling
manner; reports and
documents have a polished
professional appearance

The report is written for the
purpose of documenting the
prototype and the associated
bottlenecks. The presentation
of the critical analysis and
synthesis is professional and
well-polished.

Incorporate principles of
sustainable
design/development in an
engineering task.

Exceeding criterion (4/4): Fully
incorporates principles of
sustainable
design/development in an
engineering task

The project demonstrates
sustainable design throughout
the report. We have consulted
with numerous reliable sources
such as the industry
supervisor, the project
supervisor, and Geomatics
Master students.

Adjust project schedule based
on project status.

Meeting criterion (3/4): Makes
appropriate adjustments to a
project schedule based on
project status

The project schedule takes into
account the feedback from the
PDR, and also utilizes the
resources used within the
project.

Monitor risks during the
life-cycle of the Project.

Meeting criterion (3/4):
Monitors key risks during the
life-cycle of a project

The main key risks within the
Test Readiness Review phase
are identified, with reasonings
behind each risk.

Apply engineering concepts
and fundamentals, theories
and practices to solve
real-world
open-ended engineering
problems.

Exceeding criterion (4/4):
Applies a wide range of
engineering concepts and
fundamentals, theories and
practices to solve real- world
open-ended engineering
problems

The project is supported with
the theory and knowledge
behind vision algorithm,
image-processing. Our
supervisor provided us with
papers on motion tracking and
photogrammetric processing.

Use specialized engineering
knowledge of design specific
components, systems or
processes to solve engineering
problems.

Exceeding criterion (4/4):
Sophisticated use of
specialized engineering
knowledge of design specific
components, systems or
processes to solve engineering
problems

The knowledge and design of
the specific component have
been researched thoroughly
through iterations of
consultation with industry
adviser, project supervisor, and
research studies done by
numerous universities around
the world.

23

9. References

1. Objects recognition and position calculation (Webcam),

robotica.unileon.es/index.php/Objects_recognition_and_position_calculation_(webca
m).

2. Costas , Armenakis. “ESSE 4640 Digital Terrain Modelling Lecture 11.” 1 Dec. 2017,
Toronto. Slides 34-60

3. Oh, Hyondong, et al. “Indoor UAV Control Using Multi-Camera Visual Feedback.”
Unmanned Aerial Vehicles, 2010, pp. 57–84., doi:10.1007/978-94-007-1110-5_6.

4. “OpenCV Track Object Movement.” PyImageSearch, 21 Sept. 2015,
www.pyimagesearch.com/2015/09/21/opencv-track-object-movement/.

24

10. Appendix

Raspberry Pi Camera Module Specifications

Figure 16. Raspberry Pi Camera Module: Implemented Module v2.

25

Figure 17. Raspberry Pi Camera Module: Zero W

26

Sample .txt file output:

27

28

29

30

