

Team 1:

Indoor UAV Tracking System
Test Review

Supervisor: Prof. Costas Armenakis

Industry Advisor: P.Eng. Lui Tai

March 19, 2018

Kevin Arindaeng (213094016)
Ariel Laboriante (212951984)
Zhuolin (Jack) Lu (212848834)

Varsha Ragavendran (213193065)

Table of Contents

1. Introduction 3
2.1. Test Summary 5

Table 1. Summary of Functional Tests (FUNC) 6
Table 2. Summary of Performance Tests (PER) 7
Table 3. Summary of Reliability Tests (REL) 7
Table 4. Summary of Mean Time Before Failures Test (MTBF) 8
Table 5. Summary of Boundary Value Tests (BVT) 8
Table 6. Summary of Compatibility Tests (COM) 9
Table 7. Summary of Portability Tests (POR) 9
Table 8. Summary of Environmental Test (ENV) 9

2.2. Test Results 10
2.3. Test Analysis and Discussion 11

2.3.1. Functional 11
2.3.2. Performance 12
2.3.3. Mean Time Before Failure 12
2.3.4. Environment 13
2.3.5. Reliability 13
2.3.6. Compatibility 14
2.3.7. Portability 14
2.3.8. Boundary Value 15

2.4. Omitted Test Cases 15
2.4.1. PER-02 and PER-03 15
2.4.3. MTBF-02 15
2.4.4. COM-02 16

3. Self-Assessment of the Test Review 16

4. Appendix 17
4.1 Appendix A - Functional Testing 17
4.2 Appendix B - Performance Testing 20
4.3 Appendix C - Reliability Testing 22
4.4 Appendix D - Mean Time Before Failure Testing 23
4.5 Appendix E - Boundary Value Testing 25
4.6 Appendix F - Compatibility Testing 26
4.7 Appendix G - Portability Testing 27
4.8 Appendix H - Environment Testing 28

2

1. Introduction

The goal of this project was to successfully track the trajectory of UAVs in an indoor setting
using image-processing and photogrammetry. Our system improves the efficiency and
cost-effectiveness of UAVs by providing positioning technology and indoor navigation. To
verify whether the U-TRACKR system is fit for its intended purpose, our group conducted
verification tests which evaluated our system in eight areas that we established in our TRR:

Functional Testing Establishes that our system’s basic functions such as WiFi, SSH connection, and video
stream are working

Performance Testing Ensures that our data is transmitted at real time by checking the quality of the video
stream in terms of FPS, CPU usage, camera resolution, and stream bitrate

Reliability Testing Checks the system’s accuracy and precision when locating objects in a defined space

MTBF Testing Finds the mean (average) time between failures of the system during normal operation

Boundary Value
Testing

Tests the system’s accuracy in locating objects at the maximum and minimum
distances

Compatibility Testing Assesses the system’s ability to detect different subjects and different colours

Portability Testing Evaluates the system’s ability to function if the hardware components were changed

Environmental Testing Tests system functions when environment settings such as lux levels are changed

Figure 1. Summary of tests that validates the U-TRACKR system design

3

In this deliverable, we describe the test procedures in detail, analyze the test results, and
justify any failures in the system. After having tested the system, we plan to improve the
frames of the U-TRACKR to improve stability, and extend the system to track multiple
objects. Given the time, we also plan on customizing the U-TRACKR so that it can be
applied in two other fields:

● People counter
○ The U-TRACKR can keep track of how many people enter and leave a facility
○ Statistical information can be used to optimize store hours or display location
○ Cameras can be mounted at the entrances of malls and museums to see

where people tend to visit first
● Animals in captivity

○ The U-TRACKR system can track animal lifestyle and behaviour
○ The system minimizes human interaction and human disturbances

2. Test Verification and Validation

Figure 2. Sequence of tests carried out during system verification and validation

4

The tests were conducted in a specific sequence shown in Figure 2. Design updates were
made throughout the testing process whenever the U-TRACKR design failed to meet
minimum system requirements.

First, it was necessary that the system passes the Functional Testing phase since other tests
rely on the system’s basic functions. For example, the connection to the Raspberry Pi
microcontroller must be established before the position of a test object can be calculated.
The Performance and Reliability Testing phases were done in parallel since it was possible
to check FPS, CPU usage, camera resolution, stream bitrate, and the accuracy of position
calculations independently from each other. The MTBF Testing phase depended on the
success of the Reliability Test since the system must begin in a working state before a state
of failure can be determined. Furthermore, the Boundary Value and Compatibility Testing
phases can only be carried out if the accuracy of the system’s position calculations have
been verified. The Portability and Environmental Testing phases were carried out near the
end of the entire testing process since they were not critical requirements in validating the
U-TRACKR’s design.

2.1. Test Summary

For a more detailed description of the procedures in each test, refer to the following sections
in the Appendix:

Appendix A - Functional Testing (FUNC)

Appendix B - Performance Testing (PER)

Appendix C - Reliability Testing (REL)

Appendix D - Mean Time Before Failures Testing (MTBF)

Appendix E - Boundary Value Testing (BVT)

Appendix F - Compatibility Testing (COM)

Appendix G - Portability Testing (POR)

Appendix H - Environmental Testing (ENV)

5

Table 1. Summary of Functional Tests (FUNC)

Test ID Procedure Test Type/

Tools Used
Comments Limitations and

Constraints

FUNC-01 Verify that each
Raspberry Pi
can connect to
the same WiFi
network as the
main controller
(laptop)

Automated
Python Unit Test

Paramiko
Framework

Realistic test since the same process applies
to different WiFi networks.

Repeatable test since connection can be
disabled and enabled. Test yields the same
result every time.

Limitations: None

Constraints:
Connection was only
tested at WiFi
speeds over 500
mbps

FUNC-02 Verify the ability
to establish an
SSH connection
from the main
controller to
each Raspberry
Pi.

Automated
Python Unit Test

Paramiko
Framework

Realistic test since the main controller will
invoke and process the video feed in the same
process, regardless of the type of WiFi
network and environment setting (whether it
be the scaled prototype or a real-life setting
such as a warehouse).

Repeatable test since connection can be
enabled and disabled. Test yields the same
result every time.

Limitations: None

Constraints:
Connection was only
tested at WiFi
speeds over 500
mbps

FUNC-03 Verify the ability
to stream the
camera feed
from the
Raspberry Pi’s
to the main
controller from
each Raspberry
Pi’s at the same
time.

Automated
Python Unit Test

Paramiko
Framework

Realistic test since the main controller may
receive the video feed coming in from any of
the system’s four cameras, and at different
times due to disruptions in the SSH
connections.

Repeatable test since the main controller can
invoke the ability to stream the video feeds
from the cameras at one at a time, or all at
once. Test yields the same result every time.

Limitations: None

Constraints: Quality
of camera feed
depends on the WiFi
network quality and
room lighting

FUNC-04 Verify that
OpenCV
software runs
with no issues
on main
controller and
identifies
objects within
the frame.

Automated
Python Unit Test

OpenCV
software

Realistic test as objects of various colours and
shapes were used as camera subjects to test
OpenCV. The U-TRACKR program will not be
able to identify and track objects without the
use of OpenCV.

Repeatable test since we used a python script
to verify if OpenCV successfully identified and
tracked the object within the frame. The test
successfully ran with every target object.

Limitations: OpenCV
software can run only
if successful SSH
connection is
established and
camera feed is
streamed to the main
controller.

Constraints: WiFi
network quality and
room lighting

FUNC-05 Verify that the
U-TRACKR
program
executes the
Python script
that determines
the X, Y, Z
coordinates of
the object
within in the
frame.

Automated
Python Unit Test

OpenCV
software

Realistic test as objects can be anywhere
within our scaled version of the project, as this
is the defined space for tracking. Therefore,
this depicts objects being anywhere within an
indoor space. The U-TRACKR program should
be able to track and provide X, Y, Z
coordinates of the object.

Repeatable test since we used a python script
to verify if the output coordinates were
produced by the system when the target
object was placed within the frame. The test
was successful at every run.

Limitations: System
can only track objects
within the frame.
OpenCV must be
running, in order to
identify and
determine the X, Y, Z
coordinates.

Constraints: WiFi
network quality and
room lighting

6

https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/FUNC-01.py
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/FUNC-02.py
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/FUNC-03.py
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/FUNC-04.py
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/FUNC-05.py

Table 2. Summary of Performance Tests (PER)

Test ID Procedure Test Type/
Tools Used

Comments Limitations and
Constraints

PER-01 Check if each
Raspberry Pi
CPU usage
meets the
specified
requirements

Automated
Python Unit Test

Realistic test to ensure that our system operates
properly and close to real-time since higher CPU
usage indicates bugs or a slow system.

Repeatable test since a python script was
created to verify CPU usage. Test meets
minimum requirements and yields the same
result almost every time.

Limitations:
Raspberry Pi clock
speed

Constraints: WiFi
network quality

PER-04 Check if each
Raspberry Pi
stream bitrate
meets the
specifications

Automated
Python Unit Test

Realistic test as the bitrate of the Raspberry Pi is
a dynamic variable that can differ at certain
instances of time, depending on the
configurations and environment setting.

Repeatable test since the bitrate configurations
can be modified for every test run. The preferred
configuration is chosen to be tested multiple
times. Test yields the same result every time.

Limitations:
Raspberry Pi clock
speed

Constraints: WiFi
network quality

Table 3. Summary of Reliability Tests (REL)

Test ID Procedure Test Type/
Tools Used

Comments Limitations and
Constraints

REL-01 Check if the
U-TRACKR
program will
not crash if
one or more of
the Raspberry
Pi camera
breaks down.

Manual
Integration Test

Test object,
target markers

Realistic test since malfunctions in one of the
four cameras will deem that camera useless. It
will be as if the system has only three cameras.

Repeatable test since connections from each
camera can be disabled one at a time. Test
yields the same result during multiple tries.

Limitations: At least
two working
cameras are
required to produce
accurate position
calculations. Current
program requires all
cameras to be
working. An
exception will be
thrown if one
camera fails.

Constraints: None

REL-02 Verify the
accuracy of
the position
calculated by
the
U-TRACKR
program.

Manual
Integration Test

Test object,
ruler, target
markers

Realistic since the actual position of the test
object was measured using the ruler and test
markers. Output of the program was compared
to actual measurements with a 0.5 mm
uncertainty.

Repeatable test since the object’s position in the
frame was known in each test. The U-TRACKR
program successfully calculated the coordinates.

Limitations: System
can only track
objects within the
frame. Only one
object can be
tracked at a time.

Constraints: WiFi
network quality,
room lighting

7

https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/PER-01.py
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/PER-01.py

Table 4. Summary of Mean Time Before Failures Test (MTBF)

Test ID Procedure Test Type/
Tools Used

Comments Limitations and Constraints

MTBF-01 Determine the
mean time
before failures
of the
U-TRACKR
program while
running for at
least 8 hours.

Manual
Integration Test

Floor markers,
test subject,
ruler

Realistic test as the system would
need to operate during working
hours in a real-life application
setting.

Not repeatable since our program
was unable to run longer than an
hour. Test did not produce the
expected results.

Limitations: X, Y, Z calculation we
inconsistent. Unexpected
exceptions were thrown while
program is running. System
overheats and becomes too slow.

Constraints: WiFi network quality

Table 5. Summary of Boundary Value Tests (BVT)

Test ID Procedure Test Type/
Tools Used

Comments Limitations and Constraints

BVT-01 Determine the
U-TRACKR
program is
functional when
tracking an
object at the
farthest distance
specified by the
requirements.

Manual
Integration
Test

Floor markers,
test subject,
measuring
tape

Realistic test since objects must
be successfully tracked up to the
edges of our defined 3D space
within the system frame.

Repeatable test since the
subject’s position was defined
using floor markers. Test yields
the same results every time.

Limitations: Maximum distance of
subject from the camera was
limited to the frame space.

Constraints: A measuring tape was
used so measurements had a 0.5
cm uncertainty.

BVT-02 Determine the
U-TRACKR
program is
functional when
tracking an
object at the
shortest
distance
specified by the
requirements.

Manual
Integration
Test

Floor markers,
test subject,
ruler

Realistic test as the camera
subject can be very close to the
camera within the defined space
for tracking. Since the Raspberry
Pi is a fixed focus module and
gives sharper images at 60 cm, it
was important to ensure that the
tracking feature is still functional
at our minimum threshold.

Repeatable test since the subject
can be brought to a specific
distance to the camera each time
using a ruler. Test yields similar
results every time.

Limitations: Depending on the size
of the subject, the camera’s
angular view can be entirely
covered by the subject at a
minimum distance so it was
impossible to know if the system
was actually still tracking.

Constraints: Camera subject can
physically only be brought up to 1
cm in front of the camera before
light is blocked. A ruler was used
instead of the vernier caliper so
measurements had a 0.5 mm
uncertainty.

8

Table 6. Summary of Compatibility Tests (COM)

Test ID Procedure Test Type/
Tools Used

Comments Limitations and
Constraints

COM-01 Determine
that the
U-TRACKR
program can
identify
objects using
the full range
of values (ex.
HSV colours)

Manual
Integration Test

Floor markers,
Different colour
test subjects,
ruler

Realistic test since system may be required
to track objects of various colours within the
indoor space. The U-TRACKR program was
tested over a range of HSV colours.

Repeatable since each test subject tracked
by the system has a certain HSV color
space value that can be replicated.

Limitations: Subject
within the frame can
only be tracked by color,
and multiple subjects of
same color cannot be
distinguished from one
another.

Constraints: WiFi
network quality, room
lighting, limited time to
manually test all possible
colours

Table 7. Summary of Portability Tests (POR)

Test ID Procedure Test Type/
Tools Used

Comments Limitations and
Constraints

POR-01 Determine the
level of ease to
apply the
U-TRACKR
program to
other
hardware
applications.

Manual
Integration Test

Laptop webcam,
floor markers,
test subject,
ruler

Realistic test since different cameras may be
better suited for different needs, like longer
focus or larger angular view. The
U-TRACKR program should operate and
detect the coordinates of the objects,
regardless of the type of hardware, provided
a video stream can be fed to the main
controller.

Repeatable test since our program was able
to operate and track the object using the
webcam of a laptop.

Limitations:
U-TRACKR program
would have to be
modified slightly to
invoke different
commands depending
on the hardware.

Constraints:
Hardware should have
the ability to allow main
controller to establish an
SSH connection and
invoke commands to
retrieve video feed.

Table 8. Summary of Environmental Test (ENV)

Test ID Procedure Test Type/
Tools Used

Comments Limitations and
Constraints

ENV-01 Determine the
U-TRACKR program is
functional within a
specific lux threshold

Manual
Integration Test

Lux Light Meter
app, test subject
(tennis ball),
external light
source

Realistic test since we tested from
0-500 lux, where 500 lux is the
normal illumination for labs and
office work. System should be able
to track objects between 100-500
lux.

Repeatable as settings can be reset
to test the full range of light that
comes into the frame.

Limitations: System
breaks down at 30 lux
since there is not
enough light entering
the camera lens.

Constraints: Test was
limited to 300 lux
emitted by external light
source.

9

2.2. Test Results

Table 9. Test Results

Test ID Results
(with
screenshot)

Expected Results Actual Results

FUNC-01 PASS Ran 1 test in XX.XXXs

OK

Ran 1 test in 2.498s

OK

FUNC-02 PASS Ran 1 test in XX.XXXs

OK

Ran 1 test in 2.116s

OK

FUNC-03 PASS RPi Timestamp 1: AAAA-BB-CC

XX:YY:ZZ

RPi Timestamp 2: AAAA-BB-CC

XX:YY:ZZ

RPi Timestamp 3: AAAA-BB-CC

XX:YY:ZZ

RPi Timestamp 4: AAAA-BB-CC

XX:YY:ZZ

Ran 1 test in XX.XXXs

OK

RPi Timestamp 1: 2018-03-17 18:23:21

RPi Timestamp 2: 2018-03-17 18:23:21

RPi Timestamp 3: 2018-03-17 18:23:21

RPi Timestamp 4: 2018-03-17 18:23:21

Ran 1 test in 21.868s

OK

FUNC-04 PASS RPi 1 (x,y): (x1,y1)

RPi 2 (x,y): (x2,y2)

RPi 3 (x,y): (x3,y3)

RPi 4 (x,y): (x4,y4)

Ran 1 test in X.XXXs

OK

RPi 1 (x,y):

(253.959457397,224.121627808)

RPi 2 (x,y): (222.5,273.0)

RPi 3 (x,y):

(255.812332153,226.267349243)

RPi 4 (x,y): (257.5,208.5)

Ran 1 test in 5.002s

OK

FUNC-05 PASS Position Calc (X,Y,Z):

[x],[y],[z]

Ran 1 test in X.XXXs

OK

Position Calc (X,Y,Z): [-144.66784341],

[211.91764875],[0.72982254]

Ran 1 test in 5.192s

OK

PER-01 PASS RPi 1 CPU Usage: AA

RPi 2 CPU Usage: BB

RPi 3 CPU Usage: CC

RPi 4 CPU Usage: DD

Ran 1 test in X.XXXs

OK

RPi 1 CPU Usage: 16

RPi 2 CPU Usage: 16

RPi 3 CPU Usage: 21

RPi 4 CPU Usage: 16

Ran 1 test in 2.998s

OK

PER-04 PASS RPi 1 Bit Rate: 25000000

RPi 2 Bit Rate: 25000000

RPi 3 Bit Rate: 25000000

RPi 4 Bit Rate: 25000000

Ran 1 test in X.XXXs

OK

RPi 1 Bit Rate: 25000000

RPi 2 Bit Rate: 25000000

RPi 3 Bit Rate: 25000000

RPi 4 Bit Rate: 25000000

Ran 1 test in 2.066s

OK

10

https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/FUNC-01.py
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/screenshots/FUNC-01.JPG
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/FUNC-02.py
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/screenshots/FUNC-02.JPG
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/FUNC-03.py
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/screenshots/FUNC-03.JPG
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/FUNC-04.py
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/screenshots/FUNC-04.JPG
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/FUNC-05.py
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/screenshots/FUNC-05.JPG
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/PER-01.py
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/screenshots/PER-01.JPG
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/PER-04.py
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/screenshots/PER-04.JPG

MTBF-01 FAIL The U-TRACKR system runs for at least 8
hours.

The U-TRACKR system throws an exception and stops
tracking within a minute.

ENV-01 FAIL The U-TRACKR system can run from dim
indoor lighting (~5 lux) to bright indoor
lighting (~100 lux).

The U-TRACKR system fails to track in dim light, as it
incorrectly detects the whole screen as the object.

The U-TRACKR system fails to track often in bright
indoor lighting, as it sometimes fails to detect the object.

REL-01 PARTIAL
PASS

The U-TRACKR system will keep running
if one or more Raspberry Pi Cameras
stops functioning.

The U-TRACKR system continues to run after one or
more of the cameras becomes unoperational. However, it
throws an exception.

REL-02 FAIL The U-TRACKR system will provide
accurate data (within ~1cm) on the
position calculation of an object relative to
the frame.

The U-TRACKR system provides data, however it is
widely inaccurate, even for a stationary object located at
(0,0,0).

COM-01 PASS The U-TRACKR system can detect various
objects with a full range of HSV values in
standard lighting.

The U-TRACKR system can detect an array of colours,
with respect their HSV lower and upper bounds.

POR-01 PASS The U-TRACKR system can be used
regardless of the specifications of a
camera.

The U-TRACKR system is able to run on other camera
systems such as laptop webcams.

BVT-01 PASS The U-TRACKR system can function
(objects can be detected) when extended
beyond the frame.

The U-TRACKR system is able to track objects up until
201.526cm (around 6.8 feet) compared to the default
frame distance of 99.62cm

BVT-02 PASS The U-TRACKR system can function
(objects can be detected) when the object
is within 5cm of the cameras.

The U-TRACKR system is able to track objects as close
as 5cm.

2.3. Test Analysis and Discussion

2.3.1. Functional

Overall, the test cases that were performed for the functional testing portion of the system
passed successfully. These test cases consisted of fundamental components that have to be
operating successfully in order for the U-TRACKR program to operate as intended to and
also as specified in the requirements. These test cases are in place to ensure that the
U-TRACKR program will be able to establish an SSH connection to all four raspberry pi’s on
the same WiFi network and invoke commands to retrieve the video feed, in order to process
these feeds to identify and perform position calculations.

Figure 3. Sequence of tests in the Functional Testing phase

11

https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/screenshots/MTBF-01.JPG
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/screenshots/ENV-01.jpg
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/screenshots/REL-01.JPG
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/screenshots/REL-01.JPG
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/screenshots/REL-02.JPG
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/screenshots/COM-1.jpg
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/screenshots/POR-01.jpeg
https://drive.google.com/open?id=11PIGcYlsPZYMEOjVo27yo8sjmVyxPJtR
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/screenshots/BVT-02.jpg
https://www.draw.io/?scale=2#G1lvO5xm_ATodp5fdwjRZaLzxFK7Shdb5t

The prior test cases had to be successful before the next test case could be performed. For
example, FUNC-05 test case required FUNC-01, FUNC-02, FUNC-03, and FUNC-04 test
cases to have been performed with a successful outcome. This allowed FUNC-05 test case
to run with no issues and produce the X, Y, Z coordinate of the object identified within the
frame.

One of the requirements specified earlier, was to ensure that the U-TRACKR program
would avoid/minimize any significant impact in terms of time delays. To address this
requirement, the functional testing phase allows us to verify that the main controller
retrieves the video feed from all four cameras at the same time, keeping other factors
consistent (i.e. WiFi network, etc). As the fundamental components of the system are
working as expected and has passed the developed test cases, this portion of testing is
marked complete.

2.3.2. Performance

Out of the two test cases performed in this testing phase, all of these tests were successful.
These tests were written as automated black-box unit tests, and they returned the expected
output when run programmatically. These tests ensure the validity of two dynamic
variables, which are CPU usage and bitrate of the Raspberry Pi and camera respectively.
These tests attempt to connect to the Raspberry Pi, and run various Linux commands as a
script to determine the CPU usage and bitrate. This test design is valid, as it can be run
multiple times to determine the CPU usage and bitrate at certain instances of time in
different configurations and environments.

In the requirements from the Critical Design Review, we stated that the “microcontroller’s
processing power must ensure little to no delay when feeding the video recordings to the
server and carrying out multiple tasks on the same controller.” These performance test
designs validate these requirements since the CPU usage and bitrate are the two most
important variables when streaming videos on a server. Overall the test results are as
expected, and should not regress in the future. Since these are automated black-box tests,
they can be run while the U-TRACKR system is operating, allowing us to vary the system’s
configurations accordingly.

2.3.3. Mean Time Before Failure

The test case developed to test the mean time before failure is to account for the long
periods of time this system would operate in a real life application such as a warehouse
setting. This test case does not address any requirements stated previously, and was
derived while implementing the system. There are possibilities of the U-TRACKR producing
incorrect position coordinates due to various factors such as disconnected WiFi network,
broken pipeline of an established SSH connection, environment settings, etc. This test case
is to identify the outliers in the calculated X, Y, Z coordinates, and determine if these outliers
are caused at regular intervals while the system operates for long periods of time.

12

https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/cpuUsage.sh
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/cpuUsage.sh

The incorrect calculations of the X,Y, Z coordinates of an object within the defined area
causes the system to breakdown and throws an exception. Therefore, we consider this test
case to have failed. Since this step did not produce the expected results, the next steps are
as follows:

- Ensure that the U-TRACKR system can provide accurate X, Y, Z coordinates with an
error tolerance of +/- 1 cm.

- Account for unexpected exceptions that can be thrown, and modify the U-TRACKR
system to throw warnings rather than causing a system failure.

- Run this test again, and verifying the mean time before the U-TRACKR system
provides inaccurate X, Y, Z coordinates.

2.3.4. Environment

Only one test case was performed in this testing phase, and this test failed. This test is a
manual integration test. Verification of this test case was done by running the U-TRACKR
system and manually verifying if it is operational at certain lux environments. This test
ensures the validity of the system’s object detection algorithm by testing it in dim (~5 lux)
and bright (~100 lux) environments. These two environments would test the minimum and
maximum values of lux. The assumption is that if our system is able to track objects on
these two values, then it can track objects in any light environments within these two
extreme lux values. Due to this, this test design is valid.

One of the requirements from the critical design review was to “perform position calculation
on images to determine the precise location of objects”. Since image recognition algorithms
are highly dependent on the lighting of the environment, this environmental test design
validates these requirements since it tests various lux values. The test results are not as
expected, but remedations will be made to ensure this test passes. Our system’s object
detection will be changed to utilize a deep learning framework in order to detect objects of
various colours and sizes, which is accurate even in low and high light environments.

2.3.5. Reliability

The test cases that were performed for the reliability testing portion of the system
marginally passed.

REL-01 was mainly developed to account for any malfunctions that could possibly occur in
the raspberry pi cameras. In a real life setting, certain factors such as environment could
cause malfunctioning of components within the system. The U-TRACKR program should be
able to continue operating, rather than causing system failure if one or more components
are malfunctioning. This test was not based on any requirements specified earlier. While
developing the system, we decided to add in contingency measures should a component
cause failure. The U-TRACKR program was able to continue operating and produce X,Y ,Z
coordinates, although an exception was thrown to warn that one or more of the cameras are
malfunctioning. In this case, we considered this test case to be a partial pass as the system
did not breakdown and continued operating. Currently, the exception that gets thrown does
not provide much information regarding the camera that is malfunctioning. Therefore, the
next steps for this test case, would be to modify the U-TRACKR program to throw
meaningful exceptions that will help a user to identify which camera is malfunctioning.

13

REL-02 was developed to verify if the U-TRACKR program provides accurate X,Y, Z
coordinates of an object placed within the frame. This test encompases the project’s
objectives, and accuracy of the calculated X,Y, Z coordinates is crucial for the success of this
project. As previously stated in the CDR document, one of our requirements was to ensure
that the U-TRACKR program is able to track an object and identify the precise location as
the object is moved around within the area of coverage of the cameras. This reliability test is
to verify and validate this requirement by testing to see if an accurate coordinate is
produced while moving the tennis ball within the frame.

The U-TRACKR system is able to identify the objects within the defined area and calculates
the X, Y, Z coordinate of the object, however it is widely inaccurate, even for a stationary
object located at (0,0,0). Therefore, this test case is considered as failed. The next steps for
this test case includes the following:

- Ensuring that the U-TRACKR system can provide accurate X, Y, Z coordinates with
an error tolerance of +/- 1 cm.

- Retesting this test, and verifying the accuracy by measuring the coordinates
manually.

2.3.6. Compatibility

Only one test case was performed in this testing phase, and this test passed. This test is a
manual integration test. Verification of this test case was done by running the U-TRACKR
system and manually verifying if the system can detect various objects with different color.
This test ensures the validity of the system’s object detection algorithm by testing the
system with various objects in different color spaces. The objects being tested are adjusted
in hue, by testing the three major colours of red (orange/pink), green, and blue. The
assumption is that if our system can track these objects, it can track objects with any
combination of these hue values. Due to this, this test design is valid.

One of the requirements from the critical design review was to “perform position calculation
on images to determine the precise location of objects”. Since image recognition algorithms
are dependent on the color of the object it is tracking, this compatibility test design validates
these requirements. Overall the test results are as expected.

2.3.7. Portability

The test case developed for portability is to mainly address that different cameras may be
suited for different needs within an indoor area. As our project is a scaled version of the
actual project, the U-TRACKR program should have the flexibility to accommodate various
hardware components. The raspberry pi camera will cover the area of our frame (88x88x88
cm). However it will not cover all area in a warehouse setting, for example. Therefore, to be
more flexible when implementing the actual project, the U-TRACKR program must be able
to accommodate different hardware components with a few modifications in the code.

Previously, one of our requirements was to incorporate the use of frames that can be
assembled/disassembled allowing for portability. This test was derived from this
requirement, and further enhancing this requirement to allow for hardware changes that

14

would allow the system to be more portable. Therefore we tweaked our program to operate
with a video stream fed from a webcam. This test case passed, as the program is able to
track a object from the video stream fed from a webcam and only a few modifications had to
be made to the U-TRACKR program. As the actual results of this test case matched with the
expected results, this test case is marked complete. However, due to the incorrect X,Y, Z
coordinates calculated by the system, this test case will be tested again once the
calculations are deemed accurate.

2.3.8. Boundary Value

Two test cases were performed in this testing phase, and these tests passed. Both of these
tests are manual integration tests. Verification of this test case was done by running the
U-TRACKR system and manually verifying if the system can detect an object when the
cameras are at the farthest and shortest possible distance. This test ensures the validity of
the system’s object detection algorithm by testing the cameras at a very short distance
(~1cm) and a very far distance (>~100cm). These two values would test the minimum and
maximum camera distance environments. The assumption is that if the system is able to
track these two values, then it can track objects in any objects within these two extremes.
Due to this, this test design is valid.

One of the requirements from the critical design review was to “perform position calculation
on images to determine the precise location of objects”. Since image recognition algorithms
are dependent on the distance of the cameras, this boundary value test design validates
these requirements. Overall the test results are as expected, and should not regress in the
future.

2.4. Omitted Test Cases

These test cases were omitted due to various changes in the requirements. These test cases
can be viewed in their related section in the Appendix.

2.4.1. PER-02 and PER-03

The PER-01 and PER-04 tests are testing dynamic variables such as CPU usage and bit
rate, which change over time based on various factors such as the network speed of the
WiFi, and the number of processes running on the Raspberry Pi. Static variables such as the
ones being tested for PER-02 and PER-03 (camera FPS and resolution) do not change over
time, and are set when the system is run. Due to this, these test cases were omitted
because the verification of these tests would not provide us new information on the validity
of the U-TRACKR system.

2.4.3. MTBF-02

This test case was omitted because our project is a scaled version. Our main objective is to
build a working small scale prototype before investing towards a bigger version. We were
also constrained by our budget. As of right now, we are aware that this test case will most
definitely fail since our system is not waterproof, and is currently built on unstable frames
that may cause the cameras to move if the frames were suddenly moved.

15

2.4.4. COM-02

The COM-02 test determines whether the U-TRACKR system is able to track multiple
objects. Initially, our goal for the U-TRACKR system was to prevent collisions between two
objects. Due to various constraints, this requirement was removed and a new application
domain related to animal tracking was introduced. For now, this test is omitted since the
system successfully functions without the added capability of tracking multiple objects.

3. Self-Assessment of the Test Review

Table 10. Self Evaluation for TR Rubric Criteria

RUBRIC CRITERION FOR TEST
REVIEW

SELF-EVALUATION
RANKING

OUR JUSTIFICATIONS

Rubric 1:

Analyze essential results of
solutions and test for validity.

Level 4: Critically analyzes
essential results of solutions
and chooses the most effective
test for validity.

We analyzed each test area, and
answered all questions with regards to
the system test verification and
validation. We provided clear
reasoning on how each test area
meets the requirements specified in
our preliminary and critical design
review.

Rubric 2:

Clearly present information in
professional engineering charts,
tables, graphs, and diagrams within
a report or design document.

Level 3: Figures and tables are
legible, convincing, and
consistent with accepted
standards, all items correctly
labelled; items referred to in
document.

All figures related to test case
successes or failures are linked within
the test results table, and greater
detail is provided in the Appendix.
Each figure and table is labelled.

16

4. Appendix

4.1 Appendix A - Functional Testing
Table 11. FUNC-01

Test ID FUNC-01

Test Case Verify that each Raspberry Pi can connect to the same WiFi network as the main controller (laptop)

Test Case Type Automated Python Unit Test

Test Case Location
(GitHub)

/U-TRACKR/beta/testing/FUNC-01.py

Preconditions 1. The Raspberry Pi is turned on.
2. The Raspberry Pi networking module is enabled.

Test Steps 1. Ensure the Raspberry Pi Raspbian OS loads up.
2. Login to Raspberry Pi.
3. Attempt to connect to the same WiFi network as the main controller (laptop).

Test Data N/A

Expected Results Each Raspberry Pi must be able to connect to the same WiFi network successfully.

Test Failure Plan 1. Troubleshoot the networking module of the Raspberry Pi
2. Re-image/Reinstall the Raspbian OS to the memory card.

Health and Safety
Considerations

No relevant considerations.

Table 12. FUNC-02

Test ID FUNC-02

Test Case Verify the ability to establish an SSH connection from the main controller to each Raspberry Pi.

Test Case Type Automated Python Unit Test

Test Case Location
(GitHub)

/U-TRACKR/beta/testing/FUNC-02.py

Preconditions 1. The Raspberry Pi’s are running and functional
2. The Raspberry Pi’s are connected to the same WiFi network as the main controller (laptop)

Test Steps 1. Create an SSH connection from the main controller to the Raspberry Pi’s.
2. Run a command on the SSH connection and retrieve the system output

Test Data ● IP address of the Raspberry Pi
● SSH username of the Raspberry Pi
● SSH password of the Raspberry Pi
● SSH port of the Raspberry Pi

Expected Results Verify that a proper connection has been made by obtaining the system output to the main microcontroller
(laptop) console

Test Failure Plan 1. Verify the IP addresses of the Raspberry Pi’s.
2. Debug the SSH connection Python module to find the cause of failure.

Health and Safety
Considerations

No relevant considerations.

17

https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/FUNC-01.py
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/FUNC-02.py

Table 13. FUNC-03

Test ID FUNC-03

Test Case Verify the ability to stream the camera feed from the Raspberry Pi’s to the main controller (laptop) from each
Raspberry Pi’s at the same time.

Test Case Type Automated Python Unit Test

Test Case Location
(GitHub)

/U-TRACKR/beta/testing/FUNC-03.py

Preconditions 1. The Raspberry Pi’s are running and functional
2. The Raspberry Pi’s are connected to the same WiFi network as the main controller (laptop)

Test Steps 1. Establish an SSH connection from the main controller to the Raspberry Pi’s.
2. Execute the Python script written to execute the camera video streaming command on all the

Raspberry Pi’s, at the same time.
3. Determine if all cameras started at the same time by verifying their timestamps.

Test Data ● IP address of the Raspberry Pi
● SSH username of the Raspberry Pi
● SSH password of the Raspberry Pi
● SSH port of the Raspberry Pi

Expected Results All Raspberry Pi cameras must have started the camera at the same time, and must be able to stream the video
feed to the main controller.

Test Failure Plan 1. Debug the Python script to find the cause of failure to start all 4 cameras at the same time.
2. Verify on each Raspberry Pi that no other processes are running.

Health and Safety
Considerations

No relevant considerations.

Table 14. FUNC-04

Test ID FUNC-04

Test Case Verify that OpenCV software runs with no issues on main controller, and identifies objects within the frame.

Test Case Type Automated Python Unit Test

Test Case Location
(GitHub)

/U-TRACKR/beta/testing/FUNC-04.py

Preconditions 1. The Raspberry Pi’s are running and functional
2. The Raspberry Pi’s are connected to the same WiFi network as the main controller (laptop)
3. Establish an SSH connection from the main controller to the Raspberry Pi’s.

Test Steps 1. Execute the U-TRACKR program to run OpenCV on the video feed coming in from all 4 Raspberry Pi’s.
2. Verify that the objects within the frame are identified.

Test Data ● IP address of the Raspberry Pi
● SSH username of the Raspberry Pi
● SSH password of the Raspberry Pi
● SSH port of the Raspberry Pi

Expected Results All 4 Raspberry Pi’s cameras must have started the camera at the same time, and must be able to stream the
video feed to the main controller.

Test Failure Plan 1. Debug the Python script to find the cause of failure to start all 4 cameras at the same time.
2. Verify on each Raspberry Pi that no other processes are running.

Health and Safety
Considerations

Ensure that the objects being tracked do not collide with the frame. Depending on its velocity and mass, it may
cause damage to the frame.

18

https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/FUNC-03.py
https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/FUNC-04.py

Table 15. FUNC-05

Test ID FUNC-05

Test Case Verify that the U-TRACKR program executes the Python script that determines the X, Y, Z coordinates of the
object within in the frame.

Test Case Type Automated Python Unit Test

Test Case Location
(GitHub)

/U-TRACKR/beta/testing/FUNC-05.py

Preconditions 1. The Raspberry Pi’s are running and functional
2. The Raspberry Pi’s are connected to the same WiFi network as the main controller (laptop)
3. SSH connection established between the main controller to the Raspberry Pi’s.
4. The U-TRACKR program is running OpenCV on the video feed coming in from all 4 Raspberry Pi’s.

Test Steps 1. The U-TRACKR program is to execute the Python script which should determine the X, Y, Z coordinates
of the object and output to console.

2. Verify that the coordinates are outputted to the console.

Test Data ● IP address of the Raspberry Pi
● SSH username of the Raspberry Pi
● SSH password of the Raspberry Pi
● SSH port of the Raspberry Pi

Expected Results The X, Y, Z coordinates of the object must be outputted to the console.

Test Failure Plan 1. Debug the Python script to find the cause of failure to output information to the console. This could be
due to multiple processes running, causing a lag, or if the script is corrupted.

Health and Safety
Considerations

Ensure that the objects being tracked do not collide with the frame. Depending on its velocity and mass, it may
cause damage to the frame.

19

https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/FUNC-05.py

4.2 Appendix B - Performance Testing
Table 16. PER-01

Test ID PER-01

Test Case Check if each Raspberry Pi CPU usage meets the specified requirements

Test Case Type Automated Python Unit Test

Test Case Location
(GitHub)

/U-TRACKR/beta/testing/PER-01.py

Preconditions 1. The Raspberry Pi and camera are running and functional
2. The Raspberry Pi is connected to the same WiFi network as the main controller (laptop)

Test Steps 1. Create an SSH connection from the main controller to the Raspberry Pi
2. Run the U-TRACKR program
3. While the U-TRACKR program is running, continuously monitor the CPU usage
4. Identify if the CPU usage is appropriate, and not consistently at 100%, which indicates more processing

power is required.

Test Data ● Raspberry Pi CPU usage
● IP address of the Raspberry Pi
● SSH username of the Raspberry Pi
● SSH password of the Raspberry Pi
● SSH port of the Raspberry Pi

Expected Results CPU usage of the Raspberry Pi is within a stable threshold

Test Failure Plan 1. Overclock the Raspberry Pi if it requires more processing power
2. Debug the U-TRACKR program if its below a threshold to find the cause of failure

Health and Safety
Considerations

The failure where the Raspberry Pi CPU usage is at 100% for long periods of time, or the solution of overclocking
will produce excess heat, which may be greater than normal operating levels. This combination of heat through
the processing chip causes electromigration, which could be dangerous to the parts in the long term.

Table 17. PER-02

Test ID PER-02

Test Case Check if each Raspberry Pi Camera FPS meets the specifications

Test Case Type Automated Python Unit Test

Preconditions 1. The Raspberry Pi and camera are running and functional
2. The Raspberry Pi is connected to the same WiFi network as the main controller (laptop)

Test Steps 1. Create an SSH connection from the main controller to the Raspberry Pi
2. Run the U-TRACKR program
3. While the U-TRACKR program is running, monitor the FPS of the Raspberry Pi Camera for 10 seconds
4. If the obtained FPS meets the specified requirements during the 10 second period, the test passes. If it

does not, then it fails

Test Data ● Raspberry Pi Camera FPS
● IP address of the Raspberry Pi
● SSH username of the Raspberry Pi
● SSH password of the Raspberry Pi
● SSH port of the Raspberry Pi

Expected Results FPS of the Raspberry Pi Camera is meets the requirements

Test Failure Plan 1. Modify the arguments of the Raspberry Pi Camera FPS based on the API and ensure it is equal to the
one specified in the requirements.

2. Replace the Raspberry Pi Camera with a similar alternative

Health and Safety
Considerations

No relevant considerations.

20

https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/PER-01.py

Table 18. PER-03

Test ID PER-03

Test Case Check if each Raspberry Pi Camera resolution meets the specifications

Test Case Type Automated Python Unit Test

Preconditions 1. The Raspberry Pi and camera are running and functional
2. The Raspberry Pi is connected to the same WiFi network as the main controller (laptop)

Test Steps 1. Create an SSH connection from the main controller to the Raspberry Pi
2. Run the U-TRACKR program
3. While the U-TRACKR program is running, monitor the camera resolution of the Raspberry Pi Camera

for 10 seconds
4. If the obtained camera resolution meets the specified requirements during the 10 second period, the

test passes. If it does not, then it fails

Test Data ● Raspberry Pi Camera resolution
● IP address of the Raspberry Pi
● SSH username of the Raspberry Pi
● SSH password of the Raspberry Pi
● SSH port of the Raspberry Pi

Expected Results Resolution of the Raspberry Pi Camera meets the requirements

Test Failure Plan 1. Modify the arguments of the Raspberry Pi Camera resolution based on the API and ensure it is equal to
the one specified in the requirements.

2. Replace the Raspberry Pi Camera with a similar alternative

Health and Safety
Considerations

No relevant considerations.

Table 19. PER-04

Test ID PER-04

Test Case Check if each Raspberry Pi stream bitrate meets the specifications

Test Case Type Automated Python Unit Test

Test Case Location
(GitHub)

/U-TRACKR/beta/testing/PER-04.py

Preconditions 1. The Raspberry Pi and camera are running and functional
2. The Raspberry Pi is connected to the same WiFi network as the main controller (laptop)

Test Steps 1. Create an SSH connection from the main controller to the Raspberry Pi
2. Run the U-TRACKR program
3. While the U-TRACKR program is running, monitor the stream bitrate from the Raspberry Pi.
4. If the obtained stream bitrate meets the specified requirements, the test passes. If it does not, then it

fails

Test Data ● Raspberry Pi video stream bitrate
● IP address of the Raspberry Pi
● SSH username of the Raspberry Pi
● SSH password of the Raspberry Pi
● SSH port of the Raspberry Pi

Expected Results Raspberry Pi stream bitrate meets the requirements

Test Failure Plan 1. Modify the arguments of the Raspberry Pi stream bitrate based on the API and ensure it is equal to the
one specified in the requirements.

2. Find an alternative network utility used to stream the video produced from the Raspberry Pi Camera

Health and Safety
Considerations

No relevant considerations.

21

https://github.com/azkevin/U-TRACKR/blob/master/beta/testing/PER-04.py

4.3 Appendix C - Reliability Testing
Table 20. REL-01

Test ID REL-01

Test Case Check if the U-TRACKR program will not crash if one or more of the Raspberry Pi camera breaks down.

Test Case Type Manual Integration Test

Preconditions 1. The Raspberry Pi and camera are running and functional
2. The Raspberry Pi is connected to the same WiFi network as the main controller (laptop)
3. Create an SSH connection from the main controller to the Raspberry Pi
4. Run the U-TRACKR program
5. While the U-TRACKR program is running, place a trackable object within the frame’s tracking area

Test Steps 1. Remove the power supplied to one of the Raspberry Pi’s first, then test again by removing the power
supplied to another Raspberry Pi.

2. Verify if the U-TRACKR program is still functioning correctly, and also still able to track the location of
the object within the frame’s tracking area.

Test Data ● Object identification values used for tracking
● IP address of the Raspberry Pi
● SSH username of the Raspberry Pi
● SSH password of the Raspberry Pi
● SSH port of the Raspberry Pi

Expected Results The U-TRACKR Program must be able to continue functioning correctly even if one of the Raspberry Pi’s breaks
down. If more than one Raspberry Pi’s breaks down, the accuracy of the computed object coordinates may be
compromised.

Test Failure Plan 1. Debug the U-TRACKR program and modify the program to ensure the system will be able to support
one or more Raspberry Pi breakdowns.

Health and Safety
Considerations

No relevant considerations.

Table 21 . REL-02

Test ID REL-02

Test Case Test the accuracy of the U-TRACKR program

Test Case Type Manual Integration Test

Preconditions 1. The Raspberry Pi and camera are running and functional
2. The Raspberry Pi is connected to the same WiFi network as the main controller (laptop)
3. There is an SSH connection from the main controller to the Raspberry Pi
4. The U-TRACKR program is being run
5. A trackable object is within the frame’s area.

Test Steps 1. Monitor the U-TRACKR program for five time instances, and collect the X, Y, Z data of the object.
2. Manually measure the object’s position relative to the frame, and collect the X, Y, Z data of the object.

Test Data ● Object identification values used for tracking
● IP address of the Raspberry Pi
● SSH username of the Raspberry Pi
● SSH password of the Raspberry Pi
● SSH port of the Raspberry Pi
● Object position at five time instances from U-TRACKR
● Object position at five time instances from manual calculation

Expected Results The object’s position recorded from U-TRACKR is similar to the position recorded from manual calculations within
~1cm.

Test Failure Plan Review the space resection and space intersection implementation.

Health and Safety
Considerations

No relevant considerations.

22

https://github.com/azkevin/U-TRACKR/blob/master/beta/checker.py

4.4 Appendix D - Mean Time Before Failure Testing

Table 22. MTBF-01

Test ID MTBF-01

Test Case Determine the mean time before failure of the U-TRACKR program while running for a long period of time.

Test Case Type Manual Integration Test

Preconditions 1. The Raspberry Pi and camera are running and functional
2. The Raspberry Pi is connected to the same WiFi network as the main controller (laptop)
3. Create an SSH connection from the main controller to the Raspberry Pi
4. Run the U-TRACKR program
5. While the U-TRACKR program is running, place a trackable object within the frame’s tracking area

Test Steps 1. Determine the mean time before failure of the U-TRACKR program while running for a long period of
time.

2. If the system operates successfully and correctly for more than the time specified by the requirements,
the test is considered successful.

Test Data ● Raspberry Pi video stream bitrate
● IP address of the Raspberry Pi
● SSH username of the Raspberry Pi
● SSH password of the Raspberry Pi
● SSH port of the Raspberry Pi
● Position coordinates of object used for tracking

Expected Results The U-TRACKR program should be able to operate successfully and correctly for approximately 8 hours.

Test Failure Plan 1. Determine the cause of failure (i.e. CPU usage is 100% and system breakdown) and remediate the
problem (i.e. Stop applications which are not currently in use to lessen the CPU usage, or if possible add
more RAM, etc).

Health and Safety
Considerations

While testing for a long period of time, the Raspberry Pi may become overheated, which could be dangerous to
the components in the long term.

23

Table 23. MTBF-02

Test ID MTBF-02

Test Case Determine the mean time before failure of the U-TRACKR program while the system is exposed to various
environmental conditions faced indoors.

Test Case Type Manual Integration Test

Preconditions 1. The Raspberry Pi and camera are running and functional
2. The Raspberry Pi is connected to the same WiFi network as the main controller (laptop)
3. Create an SSH connection from the main controller to the Raspberry Pi
4. Run the U-TRACKR program
5. While the U-TRACKR program is running, place a trackable object within the frame’s tracking area

Test Steps 1. Expose the environment of the system to conditions dealt on a day to day basis indoors such as :
a. A rush of wind
b. Vibrations of floor due to heavy traffic
c. Various temperature settings ranging from hot to cold
d. Sprinkler system in case of fire indoors. (This condition will NOT be tested as the system

currently is not waterproof. However, this is a condition to be tested if the system is further
expanded to a bigger area).

2. Verify under which conditions the system still operates correctly, else measure the mean time before the
system fails to operate correctly.

Test Data ● Raspberry Pi video stream bitrate
● IP address of the Raspberry Pi
● SSH username of the Raspberry Pi
● SSH password of the Raspberry Pi
● SSH port of the Raspberry Pi
● Position coordinates of object used for tracking

Expected Results The U-TRACKR program can function correctly for most conditions mentioned above except for probably the
Sprinkler system in case of fire indoors. The system is currently not waterproof, and therefore this may cause the
system to operate incorrectly and/or crash.

Test Failure Plan 1. Replace the Raspberry Pi Camera that stops operating, with a similar alternative

Health and Safety
Considerations

Some considerations:

● While testing under various temperature settings, the Raspberry Pi may become overheated, which
could be dangerous to the components in the long term.

● While testing the system with a sprinkler like object, it is important to stay a few steps back as the
system may come in contact with water and breakdown.

24

4.5 Appendix E - Boundary Value Testing

Table 24. BVT-01

Test ID BVT-01

Test Case Determine the U-TRACKR program is functional when tracking an object at the farthest distance specified by the
requirements.

Test Case Type Manual Integration Test

Preconditions 1. The Raspberry Pi and camera are running and functional
2. The Raspberry Pi is connected to the same WiFi network as the main controller (laptop)

Test Steps 1. Create an SSH connection from the main controller to the Raspberry Pi
2. Run the U-TRACKR program
3. While the U-TRACKR program is running, place a trackable object within the frame’s tracking area
4. Vary the distance of the Raspberry Pi and camera such that it reaches the farthest distance it can track

the object. Measure this distance.

Test Data ● Object identification values used for tracking
● IP address of the Raspberry Pi
● SSH username of the Raspberry Pi
● SSH password of the Raspberry Pi
● SSH port of the Raspberry Pi

Expected Results The farthest distance that the U-TRACKR program can track matches the farthest distance specified by the
requirements.

Test Failure Plan 1. Lower the farthest distance specified by the requirements
2. Fine-tune the object identification values used for tracking
3. Use an alternate method of tracking

Health and Safety
Considerations

No relevant considerations.

Table 25. BVT-02

Test ID BVT-02

Test Case Determine the U-TRACKR program is functional when tracking an object at the shortest distance specified by the
requirements.

Test Case Type Manual Integration Test

Preconditions 1. The Raspberry Pi and camera are running and functional
2. The Raspberry Pi is connected to the same WiFi network as the main controller (laptop)

Test Steps 1. Create an SSH connection from the main controller to the Raspberry Pi
2. Run the U-TRACKR program
3. While the U-TRACKR program is running, place a trackable object within the frame’s tracking area
4. Vary the distance of the Raspberry Pi and camera such that it reaches the shortest distance it can track

the object. Measure this distance.

Test Data ● Object identification values used for tracking
● IP address of the Raspberry Pi
● SSH username of the Raspberry Pi
● SSH password of the Raspberry Pi
● SSH port of the Raspberry Pi

Expected Results The shortest distance that the U-TRACKR program can track matches the shortest distance specified by the
requirements.

Test Failure Plan 1. Increase the shortest distance specified by the requirements
2. Fine-tune the object identification values used for tracking
3. Use an alternate method of tracking

Health and Safety
Considerations

● No relevant considerations.

25

4.6 Appendix F - Compatibility Testing
Table 26. COM-01

Test ID COM-01

Test Case Determine that the U-TRACKR program can identify objects using the full range of values (ex. HSV colours)

Test Case Type Manual Integration Test

Preconditions 1. The Raspberry Pi and camera are running and functional
2. The Raspberry Pi is connected to the same WiFi network as the main controller (laptop)

Test Steps 1. Create an SSH connection from the main controller to the Raspberry Pi
2. Run the U-TRACKR program
3. While the U-TRACKR program is running, place a trackable object with the lowest values to identify it within

the frame’s tracking area. (Ex. Black color)
4. Remove the previous object from the frame’s test area.
5. While the U-TRACKR program is running, place a trackable object with the highest values to identify it within

the frame’s tracking area. (Ex. White color)
6. Remove the previous object from the frame’s test area.
7. While the U-TRACKR program is running, place a trackable object with the mean average values to identify it

within the frame’s tracking area. (Ex. Green color)

Test Data ● Object identification values used for tracking
● IP address of the Raspberry Pi
● SSH username of the Raspberry Pi
● SSH password of the Raspberry Pi
● SSH port of the Raspberry Pi

Expected Results On each video stream, OpenCV can track all 3 objects and output each of their positions on the frame.

Test Failure Plan 1. Modify the object identification values in closer precision
2. Use another method of tracking

Health and Safety
Considerations

Some considerations:
● Ensure that the objects being tracked do not collide with the frame. Depending on its velocity and mass, it may

cause damage to the frame.

Table 27. COM-02

Test ID COM-02

Test Case Determine that the U-TRACKR program can track multiple objects

Test Case Type Manual Integration Test

Preconditions 1. The Raspberry Pi and camera are running and functional
2. The Raspberry Pi is connected to the same WiFi network as the main controller (laptop)

Test Steps 1. Create an SSH connection from the main controller to the Raspberry Pi
2. Run the U-TRACKR program
3. While the U-TRACKR program is running, place a trackable object within the frame’s tracking area
4. Place another copy of the trackable object within the frame’s tracking area

Test Data ● Object identification values used for tracking
● IP address of the Raspberry Pi
● SSH username of the Raspberry Pi
● SSH password of the Raspberry Pi
● SSH port of the Raspberry Pi

Expected Results On each video stream, OpenCV can track both objects simultaneously and output each position on the frame.

Test Failure Plan 1. Check if FUNC-04 or FUNC-05 is failing for one object. Make appropriate fixes based on those test cases.
2. Check to see if the two objects return the same object identification values in OpenCV. If not, then replace the

objects with

Health and Safety
Considerations

Some considerations:
● Ensure that the two objects being tracked does not collide with the frame. Depending on its velocity and mass,

it may cause damage to the frame.
● Ensure that the two objects being tracked does not collide with each other. Depending on its velocity and

mass, it may cause damage to each other.

26

4.7 Appendix G - Portability Testing

Table 28. POR-01

Test ID POR-01

Test Case Determine the level of ease to apply the U-TRACKR program to other hardware applications.

Test Case Type Manual Integration Test with similar cameras (webcam)

Preconditions 1. The Raspberry Pi must be connected to a similar camera(i.e webcam), and must be running and
functional.

2. The Raspberry Pi is connected to the same WiFi network as the main controller (laptop)

Test Steps 1. Create an SSH connection from the main controller to the Raspberry Pi
2. Run the U-TRACKR program
3. While the U-TRACKR program is running, place a trackable object within the frame’s tracking area.
4. Ensure that the requirements are met.

Test Data ● Object identification values used for tracking
● IP address of the Raspberry Pi
● SSH username of the Raspberry Pi
● SSH password of the Raspberry Pi
● SSH port of the Raspberry Pi

Expected Results The U-TRACKR program must detect the coordinates of the objects, regardless of the type of hardware
application, provided a live video stream is fed to the main controller.

Test Failure Plan 1. Check compatibility of the similar camera(i.e webcam) to the Raspberry Pi’s.
2. First try running a live feed from the Raspberry Pi itself, before running an SSH connection to execute a

command on the Raspberry Pi to do the same. This will help in identifying where exactly the problem
lies.

Health and Safety
Considerations

No relevant considerations.

27

4.8 Appendix H - Environment Testing

Table 29. ENV-01

Test ID ENV-01

Test Case Determine the U-TRACKR program is functional within a specific lux threshold

Test Case Type Manual Integration Test

Preconditions 1. The Raspberry Pi and camera are running and functional
2. The Raspberry Pi is connected to the same WiFi network as the main controller (laptop)

Test Steps 1. Create an SSH connection from the main controller to the Raspberry Pi
2. Run the U-TRACKR program
3. While the U-TRACKR program is running, place a trackable object within the frame’s tracking area
4. Find the lowest lux (lumens per square meter) such that the object can be trackable. Ensure it is

consistent with the requirements
5. Find the highest lux (lumens per square meter) such that the object can be trackable. Ensure it is

consistent with the requirements.

Test Data ● Lux of the tracked object
● Object identification values used for tracking
● IP address of the Raspberry Pi
● SSH username of the Raspberry Pi
● SSH password of the Raspberry Pi
● SSH port of the Raspberry Pi

Expected Results The U-TRACKR program can detect the given object within a lux level specified by the requirements

Test Failure Plan 1. Modify the lux level specified in the requirements to the threshold found within this test case.
1. Replace the Raspberry Pi Camera with a similar alternative

Health and Safety
Considerations

Ensure that the objects being tracked do not collide with the frame. Depending on its velocity and mass, it may
cause damage to the frame.

28

