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1.0 Executive Summary

The U-TRACKR system provides low latency tracking for unmanned aerial vehicles (UAVs)
in an indoor setting. The key objective is to locate the exact position of the UAV using only
the image sequences of a limited four-camera system. Ultimately, the system will track and
model the trajectory of autonomous UAVs using image-processing and photogrammetric
techniques. The U-TRACKR software currently accomplishes time synchronization between
the cameras, space intersection, space resection, and position calculations to obtain the
X,Y,Z coordinates of the UAV. The system consists of four inexpensive Raspberry Pi camera
modules fixed at the corners of a stable metal frame. A personal laptop with a high
processing rate produces low latency calculations, manages the synchronization between
the four Raspberry Pi camera modules, and runs the OpenCV software for object detection
with minimum delay.

The advantages of the U-TRACKR system are threefold: First, it provides tracking solution
for objects in indoor spaces where GPS is unreliable. Second the system is not hindered by
frequency disturbances, temperature variances, and limited range as it would if the system
were to use infrared sensors. Third, the U-TRACKR software is portable and any streaming
camera can be used for the system. The initial design concept was targeted towards UAVs
which are underutilized in indoor applications. The U-TRACKR will provide positioning
technology which will improve efficiency and cost-effectiveness of programmable UAVs for
indoor use. The system can be used in warehouses where UAVs have the advantages of a
flexible flight path, automation, and the ability to enter environments that are dangerous to
human life. In this context, the U-TRACKR system will fulfill the need for employee safety,
increased productivity, and reduced company expenses allocated to damaged equipment.
The U-TRACKR successfully provides a solution for robot trajectory control in indoor,
GPS-denied spaces.

The scope of application can also be extended to tracking animals in captivity. Currently,
zoos and researchers attach acoustic or GPS tags on animals to study their patterns. These
techniques are invasive and unreliable in areas with GPS limitations. The execution of this
project minimizes human interaction and disturbances, and provides a non-invasive solution
for the study of animal lifestyle and behavior. The U-TRACKR can also be used to compare
the popularity of indoor exhibits and stores. Some museums and art galleries are presently
using loT (Indoor Location) tracking with the help of visitor heat-maps to determine and
compare the popularity of exhibitions. The U-TRACKR can provide real-time data collection
with accurate human behavior trends by extending the software to use a machine learning
library called TensorFlow. Further evolution of the U-TRACKR system in the future can
provide complete robot or UAV path control for full automation.
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2.0 Document Overview

This is a technical blueprint for the U-TRACKR project. This document has been developed
by Kevin Arindaeng, Ariel Laboriante, Zhuolin Lu, and Varsha Ragavendran for the capstone
course, ENG4000: Engineering Project. This document is intended to satisfy all the
requirements, objectives and expectations from the project Statement of Work and the Final
Year Project governing document for project deliverables.

2.1 Document Conventions

The following acronyms listed in Table 1 appear throughout this document.

Table 1: List of acronyms mentioned in the document

UAV  unmanned aerial vehicle CPU central processing unit

GPS global positioning system LSA least squares adjustment

SSH  Secure Shell HSV lue-saturation-value

loT Internet of Things CSA Canadian Standards Associations
TCP  Transmission Control Protocol 3D three-dimensional

FPS  frames per second PVC Polyvinyl chloride

Mbps megabits per second GCP Ground control point

USB  universal serial bus NOOBS New Out Of the Box software

PC personal computer OTG on-the-go

3.0 Project Requirements

3.1 Project Scope

The core of this project is to develop a tracking system that provides low latency navigation
for objects placed within a defined area such as a room or warehouse. The main objective is
to locate the position of the object in an indoor setting, where GPS is unreliable, using
image-processing and photogrammetry.

The system consists of four Raspberry Pi modules with camera module placed at each
corners of the cubed frame.

Originally, the project scope detailed the system to have a server setup that would allow the
Raspberry Pi camera modules to stream the real-time video to the server with OpenCV
software. Unfortunately, this design causes lag, as the Raspberry Pi modules have slower
processing rate, thus, a real-time calculation is not possible.
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Ultimately, the project scope expanded to incorporate the use of a main controller (laptop),
which has a better processing rate and allows the system to produce low latency (1.0s to
3.0s) calculations. The low latency results are produced by managing the time
synchronization for all four Raspberry Pi's and camera modules, while running OpenCV
software with minimum delay.

3.2 Stakeholders

The main stakeholders of this project are identified below.
1. Businesses using robots within a warehouse

Businesses such as Amazon use mobile robots to improve their Prime services of promising
two days delivery. However, these industrial robots such as Kiva, require a specific
environment to operate. For example, floors need to have custom grids so that the robots
can move, and workers are at risk of getting hit if they are in the way. The execution of this
project will allow for businesses such as Amazon to track these mobile robots, and minimize
safety-related lawsuit risks.

2. Scientists and researchers focused on animals in captivity

Presently, zoos are using techniques such as attaching acoustic tags or GPS tags on animals
to carry out their research and capture movements, and behavioral patterns. These
techniques are sometimes invasive and are not available for indoor areas where GPS is
limited. The execution of this project minimizes human interaction and disturbances, along
with providing a minimally invasive approach for tracking and studying the animal lifestyle
and behavior.

3. Museums and art galleries comparing the popularity of exhibitions

Some museums and art galleries are presently using loT/Indoor Location tracking with the
use of visitor heat-maps to determine and compare the popularity of exhibitions. The
execution of this project provides low latency data collection with more accuracy of behavior
trends, as the project can incorporate the use of a machine learning libraries.

3.3 Engineering Requirements

The user will interface with the python command line and environment by executing the
main.py program found within the U-TRACKR system, which will operate as expected
within a minute. However, in order to successfully execute the program, the user will have
to have the following libraries and frameworks installed:
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Table 2: User requirements

Library/Framework to install Command to Execute Purpose

Python 2.7.13 install Python 2.7.13 The U-TRACKR system is
entirely programmed in
Python, therefore in order to
execute this system the user
will have to have the Python
library installed.

OpenCV 3.4.0 install OpenCV 3.4.0 The OpenCV software is run
through the tracker.py
program which identifies the
object through image
processing techniques.

NumPy pip install numpy The NumPy module is used to
define the HSV array values
when for object tracking
purposes using OpenCV.

SymPy pip install sympy SymPy is used for position
calculation purposes,
specifically in the space
resection and intersection
algorithm using its matrix
libraries.

imutils pip install imutils This framework provides
helper functions that go hand
in hand with image processing
operations such as translation,
rotation, and resizing.

picameralarray] pip install picamera([array] This module is used to
construct an n-dimensional
array that captures the outputs
from the cameras, which will
then be used for image
processing techniques.

paramiko pip install paramiko The paramiko framework
allows the main controller to
establish an SSH connection
with each Raspberry Pi module
to retrieve the live video feed.
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3.3.2.1 Functional Requirements

Initially, the strategy was to incorporate the use of a server to process the video
captured by the Raspberry Pi camera to identify the objects within the tracking area.
However, it was realized that reading and writing to the server caused lag in the
system. This defeated the purpose of identifying the trajectory of objects in real-time.
Therefore, the system was redesigned to first establish an SSH connection with all
four Raspberry Pi Zeros. A command is executed on each Raspberry Pi Zero to start
and write the live video feed to the main controller (laptop) at the same time.

The U-TRACKR program was then successfully able to run the OpenCV software on
the live feed to identify objects within the defined area. The U-TRACKR system then
executes a Python script which calculates the coordinates of the object within the
frame’s area and outputs these coordinates to the console successfully.

Additionally, in the preliminary and critical design review documents, the functional
requirements initially revolved around building a system that handles and detects
only one object within the frame. This requirement was successfully met with the
use of the OpenCV software that allows detection of objects based on color or
ArUCO markers within a defined area.

3.3.2.2 Performance Requirements

The primary performance requirements have not changed with one minor exception.
In the preliminary design review, the idea behind performing image processing was
to first setup a server from which a Raspberry Pi module will process the videos
frame by frame, to identify the objects in motion and identify the location of the
objects in the indoor space. During implementation, major time delays were noticed
when following this approach, thereby affecting the performance of the system.
Hence, the current approach incorporates the use of a main controller instead of a
server, which allows the system to produce real-time position calculation with
minimum delay.

All regulatory requirements stated earlier in the preliminary design document were
consistently met during the implementation of this project and the system complied with
additional requirements. Since the system applies to indoor UAV applications in private
warehouse buildings, there are no flying regulations or noise level requirements. The system
complies with the Workplace Safety and Insurance Board (WSIB) policies, the Worker
Health and Safety - Ontario Ministry of Labour policies, and the York University's policy with
regards to Temporary Use of University Space. Firstly, as this project involves processing
image frames from a live feed camera, privacy related regulations must be in effect when
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operating this system with humans being in the defined area. Secondly, as the power
interface uses commercial power supplies, it satisfies the CSA standards.

3.4 Limitations and Constraints

The limitations of the U-TRACKR system are identified below:

Static Objects: Currently, the U-TRACKR system does not account for any static objects
(non-moving objects) that may be within the frame. Although this may not be of big concern
right now, when expanding this system to a bigger area, static objects must be taken into
account as they may block the view of the cameras and therefore perform inaccurate
calculations when determining an object’s coordinates or the system might not be able to
identify objects within the frame.

Identification of Multiple Objects: Although multiple objects may be placed within the
frame, the system presently only tracks one specified object (Color, ArUCO trackers). While
expanding to a bigger area, where multiple objects are to be tracked, the system must
incorporate the use of machine learning algorithms which would account for multiple
objects within the frame.

The constraints of the U-TRACKR system are stated below:

WiFi requirement: Currently, the system establishes an SSH connection between the main
controller and the four Raspberry Pi’s, therefore WiFi connection is mandatory for system
functionality.

Lux threshold: The U-TRACKR system is able to identify the frame of reference of an object
within a 3D system provided there is ample amount of light available within the frame. If no
light enters the frame, the U-TRACKR system will not be able to identify objects, and may
produce inaccurate X, Y, Z coordinates.

Possible improvements to the U-TRACKR system that would make it more suitable for
actual use by stakeholders include:

Incorporating the use of Machine Learning Platforms: With the use of a machine learning
platform such as TensorFlow, the U-TRACKR system can be evolve to learn and identify
objects of various kinds within a defined area. This would allow the system to be more open
to tracking objects of different kinds in various settings without having to manually program
the system to track these kinds of objects.
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Distinguishing Between Multiple Objects of the Same Type: The system did incorporate
the use of a machine learning library to allow detection of various objects, however there
were issues with distinguishing between multiple objects of the same kind. With this
improvement in the future, the system would be able to track more objects within the
defined area with no restrictions or limitations.

Better cameras with better processing rate: Presently, the system incorporates the use of
Raspberry Pi cameras which have a slower processing rate and therefore affects the frames
processed per second which in turn obstructs the objective to produce real-time position
calculation. With the use of better cameras, the system would be able to determine the
frame of reference of the objects at a faster rate and with a more precise calculation.

4.0 Engineering Concepts and Design Methods

4.1 Object Detection

In order for the U-TRACKR system to obtain a position calculation of an object, it first needs
to detect and locate where an object is image-by-image using various computer vision
techniques.

The U-TRACKR system performs image acquisition by streaming a video feed from each
camera to a TCP connection. This is done remotely from the main controller by establishing
an SSH connection to each Raspberry Pi, and running the following command:

'raspivid -t 0 -n -w 640 -h 480 -fps 30 -rot 90 -ex fixedfps -ex
auto -b 25000000 -o - | nc -1 5000"'

This command utilizes the raspivid command line tool to produce a video stream at 480p
resolution, with a fixed frame rate of 30 frames per second, an image rotation of 90 degrees,
automatic exposure, and a bitrate of 25 Megabits per second. This command also utilizes
the netcat utility to write the video data to the local TCP port of 5000.

The main controller then reads the video data by establishing a TCP connection to the
Raspberry Pi using its IP address. It then uses the OpenCV VideoCapture class to obtain
each frame from the video stream. Analysis of each image frame can then be done to
perform object detection.

Detection by color space is the extraction of distinct colours in the image given by the
camera. The object must be distinguishable and have different color features than its
surrounding.

10
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OpenCV'’s findContours() function is used to detect a specific HSV color space range within
the image frame. A specific lower and upper range is given for a particular object in order to
detect it. Once the contour is obtained, a circle is drawn on the frame, and its centroid pixel
coordinate is then used for position calculation.

In this case, the object being tracked is a tennis ball. Thus, an HSV range from (25, 70, 6) to
(64, 255, 255) is used to find the contour below.

Figure 1. Tracking using HSV color space

One of the limitations of this detection method is that any other sources of green colour
produced by the surrounding can affect the detection of the marker. Thus, the use of yellow
light is also not recommended as yellow light interferes with the selected marker colour.

Another limitation is that if the lighting is too dark or too bright, the HSV range must be
adjusted as well in order for the object to be detected in the image.

Figure 2. Limitations of detecting in low-light

11
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4.1.3 Detection by ArUCO Markers

ArUCO markers are generally used in the determination of post-estimation in computer
vision applications. These markers are composed of a black border and a binary pattern
which determines its ID (identification). The black border allows for fast detection in the
image frame.

OpenCV’s ArUCQO detectMarkers() function is used to detect a specific ArUCO marker in the
image frame. Once it finds the black border and the correct binary pattern, a square is
drawn around the object, and its midpoint pixel coordinate is then used for position
calculation. In this case, this type of detection is used to track a drone. A 6x6 bit ArUCO
marker is added on the top of the drone in order to detect it.

Figure 3. Detection of Drone using ArUCO Markers

One of the limitations of this type of tracking is that if the environment lighting is too dark,
the system will not be able to detect the marker. Also, having the marker on any object
becomes intrusive to it. In this example, having the marker on a drone limits its flying
capabilities as a load is attached to it.

4.2 Time Synchronization

One of the main design processes for the U-TRACKR system to work is to get time
synchronization working across multiple cameras. Since the position calculation of an object
in 3D space is time-dependent, it is necessary to ensure that every frame captured by the
camera happens at the same timestamp.

This is done using Python’s threading interface to concurrently output each camera’s
timestamp, and the object’s pixel coordinates relative to the frame at the same time. Each
camera video stream starts at the same time, and after each sampling time of one second,
the position calculation algorithm is performed based on each camera’s pixel coordinates.

12
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Time Synchronization In U-TRACKR
E Raspberry Pi Raspberry Pi Raspberry Pi Raspberry Pi s ;
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! 1 H ' : H
i | H — H H H
Execute i Initialize rackerpy ! Initialize rackerpy Initialize trackerpy | Initialize tracker py H
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H
H
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H
H
H
H
H
H
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coordinates for : coordinates for i coordinates for H coordinates for
camera #1 : camera #2 H camera #3 i camera #4
: H H
¥ "
3 .
g :
E x position calculation Photogrammetry
H algorithms
H
H H
:
.................................................................................................................................
| ! retumn x,y,z coordinates

Figure 4. Sequence diagram illustrating time synchronization across multiple cameras

4.3 Camera Calibration

The camera calibration process involves finding the intrinsic parameters, distortions,

skewness, focal length, and errors associated with the Pi cameras that are not provid

ed in

the specifications. This process is performed using the MATLAB Camera Calibration
application where a checkerboard pattern is captured with the Raspberry Pi camera module
V2. The output parameters may be different than the specified manufacturing parameters.

The results are posted in the figure below:

13
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|_E_| 1x1 cameraParameters
Property » Value
tH ImageSize [2464,3280]
_‘Ij RadialDistortion [0.2154,-0.4175]
Ci] TangentialDistorti... [0,0]
| WorldPoints 352 double
]| WerldUnits ‘millimeters’
/| EstimateSkew 0
1 NumRadialDistorti... 2
Z| EstimateTangentia... 0

jj TranslationVectors
-_H ReprojectionErrors
J_] RotationVectors
E NumPatterns

4x3 double
35x2%d double
4x3 double

4

1] IntrinsicMatrix [2.6151e+03,0,0,0,2.6177e+03,0;1.5773e+03,1.2418e+03,1]

jj FocallLength [2.6151e+03,2.6177e+03]
J__i PrincipalPoint [1.5773e+03,1.2418e+03]
1 Skew 0

:_[j MeanReprojection... 1.5546
jj ReprojectedPoints 3524 double
{11 RotationMatrices ~ 3x3x4 double

Figure 5. Camera Calibration: Intrinsic parameters, radial distortion, tangential distortion, skewness, focal length.

4.4 Coordinate System Determination

The pixel coordinate system is calculated by utilizing the marker detection and recognition
software. The pixel coordinates are given in (X .. ,Y,.) coordinate with respect to the
resolution of the image and origin at the top right corner of the image pixel image frame. For
instance, an image with resolution of 3280 x 2464 will have a pixel maximum at those
values. The pixel coordinates are taken per second and the data is put into the
pixel-coordinate-to-image-coordinate converter.

(0,0 [3280,0)
— +X
* [y
[0,2464) . i
(3280, 2464)

+¥

Figure 6. Pixel coordinate system

From pixel coordinates, the image coordinates can be found using the transformation
derived from pixel size, resolution, and pixel coordinates. This process is done using the
Python code, with the output matrix set aside for manipulation later. The pixel-to-image
coordinate conversion is present by the following equations:

14
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Table 3: Pixel Coordinates to Image Coordinates
Pixel Coordinates to Image Coordinates
Where,
SizeOfPixel = 1.12 mm SizeOfPixel 1s pixel size of the image predefined

by the Pi cameras

Width,simage. = 1280/2 Width,fimage 15 predefined by the image
resolution of 1280 X 720

Height,simage = 720/2 Height,fimage 1s predefined by the image
resolution of 1280 X 720

Ximagecoords = (xpgxer,;nﬂ,ds — Widthpfimage xerFEWTd,is reccrfied from positional tracking
o []._5) * SizeOf Pixel algorithm pr;santed in CDR B _

Vpixelcoords 15 recorded from positional tracking
algorithm presented in CDR

Ximagecoords is the converted X image coordinates
matrix

Yimagecoords15 the converted ¥ image coordinates
matrix

J’rfmagefunrds o (H'Eight{)ﬂmage = Ypixelcoords
+0.5) * SizeOf Pixel

Imageﬁ'&ordinates (xfmlzgeﬁ'aurdﬂ .]"Jma.gel.’.‘oords)
1s the converted (x, ¥) image coordinates matrix

[nX 2]

‘lmﬂ'ge Coordinates (xfmuger_‘nurdﬂ }'.'mag e Coards]

- Generic calculation of the image coordinates.

The computed image coordinates are measured in millimeters, and the output is defined by
(XimageYimage)- 1€ resultant output is used to define the parameters of the space resection
calculation.

The 3D space coordinate defines the position of the object with respect to the frame. The
frame is measured in meters and is defined by the (X,Y,Z) coordinate system. Figure 7
shows the relationship of positions with respect to each cameras.

4.5 Space Resection

Space resection is the mathematical computation of the camera coordinates that are used to
define the frame of reference in a three-dimensional system. This process calculates the
exterior orientation derived from collinearity equation, conformal transformation,
linearization by means of Taylor series of expansion and least square adjustment to
eliminate the blunders. The output is an iterative solution where each camera is given a
3-dimensional space coordinate and angular orientation with respect to the camera frame
system.

The following equations represent the procedural relationship of the space resection
process:

15
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Table 4: Space Resection (1/4)

\u,

Space Resection (1/4)

Exterior Orientation (w, ¢, k&, X, ¥, Z;)
Image Coordinates (x, ¥)
Ground Coorinates (X,Y,2)

w=0¢=0

(AB): = (X4 — Xg)? + (¥ — Yp)?

H=ZL

H—2
Xa:x“( f N)
, H-2Z,
lr"l....zxn( f )

X=aX'—bYV'+T,
Y=5bX"—aV'+T,

AB)? = (xa (H ;Zﬂ) - (H ;Zﬂ))"‘

Where,

(e, b, x, X, Y, Z,) are the exterior orientation to
be calculated by space resection

(x,v) are the image coordinates denoted by the
lower case

(X, Y,Z) are the ground coordinates denoted by the
upper case

w = 0, ¢ = 0 are the pre-set angular orientation to
be iterated

(AB)? is the distance calculation between one
ground coordinate and the other in a planimetric
coordinate

H is the height to be rearranged and solved

Z; The height of the exterior orientation

(X, ¥y) are the ground coordinates of the ground
control points from the assumed vertical photo; N
and n denotes index of matrix from | ton

{a,b) are the coefficients of polynomial of
conformal coordinate transformation using least
square principle

1., T, are the translation of a conformal coordinate
transformation using least square principle

-  Space resection by iteration of initial parameters. Ground coords. [m], Image Coords. [mm]
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Table 5: Space Resection (2/4)
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space Resection (2/4)

And the LSA soletion
rX

¥,

X

LYy

X ¥ 1 1
s Xg' Yy 0 1

Xy ¥y 0 1

X=0ATA)tATL

k=0= tan‘ifgj
The rotation matrix
Myy Mgz Mys
mo= |Mzy Mz Mgz
Mgy Mizz Mag

My = COSPCOsSK

Myz = SiNWsingCcosy + coswsinkg
Mz = —COSWSIMGCOsK + sinwsing
Mz = —COSHSINK

Mz = —SINWSINGSInK + COSWCOSK
Ma3 = COSWSIMPSINK + SINoCcOSK
M3y = sing

M3z = —SiwWCosd

M3y = COSWCOSH

Linearization using Taylor series of Expansion
Solving for (dew, dey, die, d Xy, AV, dZ;)

In = bY dw + bY,dg + bY¥,dx — bY, dX;
— bitd¥, — bihdZ,

Kp = bP dow + b5 dg + bPadr — bE,dX;
— bl.dY, — biadZ;

Where,
L is the ground coordinate (X, ¥) matrix

A is the designed matrix of the calculated ground
control points

X is the adjusted mairix of the least square
adjustment (L5A) solution

K is one of the calculated angular orientation

11 IS rotation matrix used to calculate the conformal
transformation of the coordinate system

My 15 the individual matrix calculation of the
conformal rotation

(dew, dep, dxe, dXy, dYy, dZ;) are the estimated and
linearized parameters using Taylor series of
Expansion

Jw. Ky linearized parameter for ground coordinates
(X. ¥

N and F are the indices for ground coordinates
from Xto¥ fromAto D (i.e.b? b)) and n is
numerical index from 12  row  matrix
ie.hdt .. b))

- Space resection by iteration of initial parameters

17
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Table 6: Space Resection (3/4)

Space Kesection (3/4)

Elements for the Designed B Martrix Where,
F =y (Xq — X))+ mye (Y — Yo) + mas( 2y ¥, 5, q are the calculated coefficients corresponding
- &1 to A matrix

5 =mz (Xq — Xp) + maa(¥y — V) + maa(Z,
— &)

g = mz1(Xq — Xp) + maa(¥e — Vo) + maa(Z,
=)

bﬁ;{r is the element of the calculated B matrix
derived from r, 5, ¢ matrix, rotation matrix, initial
+ myz45)] assignment and calculation of (w, ¢, k)

biwi = j—z[?"f—??‘ljjﬂy + ?ﬂgzﬂzj P ﬂ(—i?luﬂ,]"

B, = j—z[r(cﬂs-:pﬂx + sinwsingAY

— coswsingAZ)

— g —singcoskAX

+ Sinwcos@pcoskAY
— cosweosgproskdd)]

biwa = —£{m21M + Mz AY + mazAL)

—_—
bih'al = —3(”"‘?31 — qmyy)

q
b?: = qi'i?'mlz — gmy;)
by = ;—zf”ﬁaa — gmy3)
b3y = % [s(—mazAY + myzAZ) — g(—myzAY
+myzAZ)]
= ;—z[sfcasqfvﬂx + sinwsingAY
— coswsingAZ)

— g —singcoskAX
+ sinwcosdooskAY
— cosweosgroskAl]]

b'fl = £Km11M + my2AY + mﬂﬂE]

llll'
bg‘-ﬂ- = F(Smaz = qrm-”:l

- b:‘,,m are the individual elements assigned in the § matrix
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Table 7: Space Resection (4/4)

space Resection (4/4)

Where,
f
bis = F{Emaz — gMmyz)
e
bag = F{? M3z — GMy3)
Least Square Adjustment of B matrix B matrix is the design matrix to solve the calculate

A 4 A A 4 1 exterior orientation matrix; derived from the
b1y byz biy —bis —bt.—b - :
F . i . 15 g combined elements of b matrix

A A A

B=|bz1 baz b2y —bas —bis—big
T e SR TR
o o o 0 —ht.
23 bzz by —by, T YTz

X, L is the ground coordinate (X, ¥) matrix

il o A solution of the LSA of B mairix

dg
dx
A=lax,
dar;
_dzt.

A= (B"B)Y(BTL)

Calculation of Exterior Orientation (EQ) (e, b, 5, Xy, ¥, Z;) calculated E.O
(e, g0, X, Yy, 21 )

180%
n.|=r.im( < ):I:HE'D'-"

180%
T

¢==d¢(

k==8+dk

X, =Ty +dX;
Yo =Ty +dYy
& =T+ di;

)iEED”

- Calculated EQ. in [m] and [® ]
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4.6 Space Intersection

Space intersection uses the principle of stereopair image to find the intersection of two rays
that connect through a pair of planes. The process of space intersection finds the positional
coordinates of an object given the exterior orientations of the camera system.

- Camera 4 ¢

‘Camera 3

Camera 1 | Cirtoran

(0,0,0) (90,0,0)

Figure 7. Camera frame system: origin of the system is defined at the corner below camera one.

Figure 8. Stereopair property

The final 3D-space coordinate solution is an iterative process similar to space resection,
where collinearity equations are used with the least square solution. The accuracy of the
solution is dependent on the number of cameras where an increase in number of cameras
increases the degrees of freedom, thus enhancing the results. The law of diminishing
returns applies when there is an excess amount of cameras but the accuracy does not
increase significantly.
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The following equations represent the procedural relationship of the space intersection
process:

Table 8: Space Intersection

Elements for the Designed B Matrix Where,
f
BY, = —(rmgy, — gm
4 = oz (rmay — gmaa) 5Y/P ic the element of the calculated B matrix
EN _ ifrm S derived from v, 5, g matrix, rotation matrix, initial
157 g2 327 @Mz aszignment and calculation of (w, ¢, &)
f
bl = q_g (rmag — qmya)
f
bi, = E (smzy — qmy,)
f
bis = ?ismz: —gmy;)
p _ 1
bzg = ? (rmaz — qmy3)

Least Sguare Adjustment of B matrix

A A A
—bis —bis —Dbis
_ —1:!&4 —bfg —bjﬁ B matrix iz the dezign matrix to solve the calculate
3= __Iﬁ * extericr orientation matrix; derived from the
] N o combined elements of b matnx
|—baa  —bas —bag
.Xl
¥
= . L iz the ground coordinates (X.¥) matrix with
i 1,.—:; respect to image coordinates
rd Xy
A= |dF
LdZ;,

A zolution of the LEA of B matrix in (X, V. 2;)

— fpTpy—1,pT
A=(B"B)(B'L) zolution

Iterating P et
erating rarameters Iterative zolution of (X, ¥;. Z;)

X, =dX, +X%,
Y, =dV, +V,
Z,=dZ, +Z,

- EJ;HP are the individual elements aszigned in the B matrix.

5.0 System Integration

The following tables provide a summary of the models and versions of hardware and
software needed for the project.
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Table 9: Summary of software frameworks required

Software
Python
OpenCV
MATLAB

U-TRACKR Codebase

Table 10: Summary of hardware required

Hardware

Version

2.7.13

3.4.0

9.3

beta

Raspberry Pi Zero Wireless (W) board with onboard WiFi and Bluetooth

Official Raspberry Pi Foundation Zero case with 3 interchangeable lids

8 GB MicroSD card (Class 10) pre-loaded with NOOBS

CanaKit 1A power supply

Raspberry Pi Camera Module V2

Anker PowerLine micro USB cable (10ft)

Anker 40W/8A 5-port USB charger PowerPort 5

Mini HDMI adapter and USB OTG cable

Frame or fixed camera mounts

5.1 Software Architecture

The main controller acts as the client, that requests services to determine the position of the
objects within the frame. One of our main requirements, which we identified as a
requirement in the Critical Design Review, was the following: “Synchronizing all four
cameras to determine the accurate location of the objects”. The system uses the Python
threading module and Paramiko framework to establish a secure shell protocol with all four
Raspberry Pi modules and concurrently output each camera’s timestamp. This will
synchronize the frames of one camera to the other, allowing for consistent data. The main
controller will then process the camera image frames using the OpenCV software to identify
objects and output the pixel coordinates relative to the frame. Space resection computation
will be performed on the coordinates to define the frame of reference in a 3D system.
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———————————————————————. S i~
<<secure>> | Ragpperry Pi Module | S<@SPVId>> | Gamera
#1 l— | #1
G stk

"
<<secure>>  Raspberry Pi Module !_ <<raspivid>> __ Camera
#2
P | .
. | <<image-processing>> i) <<SSH>>
Identify | FT - i) Internet
Obleris | OpenCV 1 Paramiko
Main Raspberry Pi Module |_ ________ , Camera
<<raspivid=>
Gontroller <<secure>> i | P | #8 |
<<photogrammetry=>>| I MATLAB ( .
priciee) >>GED Raspberry Pi Module l_ ________ » Camera
<<secure>> #4 | <<raspivid>> #a
e 4
Position
Calculation

Figure 9. Software architecture diagram of the U-TRACKR system

5.2 Physical Design

The initial system design was inadequate in keeping the cameras at fixed positions, which is
critical in the space resection and intersection calculations. Moreover, the initial frame
proved to be problematic since it deterred the system from obtaining correct coordinate
results. Furthermore, the camera holders were not easily adjustable.

Figure 10. Initial system frame and camera holders

The physical design of the system frame and camera holders in the U-TRACKR system was
upgraded to improve system stability and consistency. The new designs made it easier to
change the camera angles and the designs improved the overall system appearance.

5.2.1 System Frame

In previous designs, the camera angles changed at the slightest disturbances of the frame.
Therefore, the team obtained steel beams to increase system stability. A metal foam board
was used for the base, and a grid was created with known coordinates for camera
calibration.
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Figure 11. Final physical design of U-TRACKR system

5.2.2 Digital Design for Camera Modules

The camera module holders were 3D-printed at the Lassonde lab and some of the designs
were obtained from Thingiverse. The mounts were created in CAD software to securely
attach to the the U-TRACKR system frame.
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Figures 12a, 12b, 12¢, 12d, 12f.

Digital designs for U-TRACKR camera module holders
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Figure 13a, 13b. Final physical design of U-TRACKR camera module holders
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5.3 Software Design

There are four main Python classes used to run the U-TRACKR system.

Table 11: Python classes

Class Description

timesync.py Connects the main controller to the Raspberry Pi using the
Paramiko library by establishing an SSH client connection. Has
various methods to start a continuous video stream, and obtain
the current timestamp of the Raspberry Pi.

tracker.py Performs computer vision functions on each image frame
provided by the video stream. It stores the pixel coordinates of
the tracked objects.

intersection.py Performs a position calculation given the exterior camera
orientation parameters, and the pixel coordinates of the
tracked object as input.

main.py Starts each Raspberry Pi video stream concurrently using
threads, and obtains a position calculation at every sampling
instance.
U-TRACKR )
timesync

+ raspiVidCommand: String = -
+ timeStampCommand: String intersection
+ ssh: paramiko.client. SSHClient

+ x1: float
+ runRaspiVid() +y1:float
+ getTimeStamp() + x2: float
+ closeSSHClient() - + y2: float
main + x3: float
+ y3: float
+ utrackr: tracker + f: float
+ utrackr2: tracker + x0: float
+ utrackr3: tracker + yo: float
tracker + utrackrd: tracker + pixSizeX: float
+ timesync: timesync N Pixs\ﬁij:ﬁ -f!o?t
+ cap: cv2.VideoCapture : ;mgH;ighi-l?m
+ x: float * .
+y: float

+ pixel_to_imageX(xarg : float)
+ pixel_to_imageY(yarg : float)
+ position_calculation()

+ radius: float

+ printTimeStamp()

+ getFrame()

+ getFrame ARUCO()

+ outputFrame(frameName : String)

+ outputFrame ARUCO(frameName : String)
+ captureFrame(frameName : String)

+ stopTracker()

Figure 14. UML Class Diagram of U-TRACKR system

27



U-TRACKR

\u,

LASSONDE

SCHOOL OF ENGINEERING

The figure below depicts the workflow of a user executing the U-TRACKR system. The
entry point of this system is the execution of the main.py program which enables and starts
all background services such as tracker.py, timesync.py, cv2, and checker.py in order to
retrieve the X, Y and Z coordinates of the object placed within the frame.

When main.py begins, its initial step is to retrieve synchronized camera frames from all four
Raspberry Pi camera modules. Using these frames, the program performs image processing
techniques using the OpenCV library to identify objects and determine their X, and Y
coordinates relative to the image. Finally, the program performs space resection and
intersection using the extracted X and Y coordinates to produce the X, Y, Z coordinates of
the object.

Executing U-Trackr Program

main.py tracker.py timesync.py 2 di:::ry>> checker.py

User execute
' initiates object
identification process camera frames

synchronization

returns synchronized | |image-processing |

camera frames

detecliné objects

returns x , y coordinates
of detected objects
T SRS svm———————

photogrammetry

1 ' ' i
" position calculation g P
! returns x, y , z coordinates i
e deesessesesmenresses

Figure 15. Sequence diagram of executing the U-TRACKR system
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6.0 System Performance

6.1 System Results

In this section, the results from the space resection and space intersection are analyzed.

6.1.1 Space Resection Results

The exterior orientation parameters of camera one uses the 13 ground control points (X,Y,Z)
coordinate marked in the image below. Each GCP is associated with a pixel coordinate value
measured at a resolution of 3280X2464. The pixel coordinates are then converted into
image coordinates. When the image resection function or single_photo_resection.m in
MATLAB is run, the camera position with respect to the frame is found. (The input format
can be found in Appendix A).

Figure 16. Space Resection performed on MATLAB for camera one image

The iterative solution takes an initial exterior orientation or initial looping parameters of 3D
space coordinate and angular orientation. The iteration stops until the error produced by the
least square adjustment is negligible (less than 0.00000001 m or 0.00001 mm). These
numbers are changed accordingly for each camera as they occupy coordinate space and
angular orientation. For instance, the following example is produced by camera one after 20
iterations.
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Table 12: Space Resection Results: Iterative solution

Camera One Number of Space coordinates Angular Orientation
Image Resection iterations (X,Y,Z) [(m] (w,¢,x) [rads]
Initial Looping Parameter 0 (0.05, 0.05, 0.98) (0.785, -0.785, 0.0)
Negligible LSA 13 (0.0745, 0.0783, 1.0686) (0.3516, -0.3403,
(LSA > 0.0000001) -2.3199)
Resection Set Counter 20 (0.0745, 0.0783, 1.0686) (0.3516, -0.3403,

-2.3199)

After the image resection is run, two outcomes occur: the LSA becomes negligible when it
meets the tolerance, or the program runs 20 iterations. The negligible solution shows us
that the results converge after 13 iterations with a tolerance of 0.00001 mm (or
0.00000001 m) error. Therefore, after 13 iterations, the solution converges to tolerance and
the iterative process becomes unnecessary, by law of diminishing returns.

LSA, Angles Convergence LSA, Exterior Ori ion Coordinates Ci
T T T T + T T

Correction of Orientation Angles [rads]
Correction of camera coordinates [mm]

. . . . L
2 4 6 8 10 12
Number of Iterations Number of Iterations

Figure 17. Convergence Analysis: angles convergence (left) after 13 iterations, and exterior orientation coordinates
convergences (right) after 13 iterations.

The output exterior orientation values are subject to the error in the frame coordinate and
the residual from iterative solutions. The iterative solutions are negligible since the system
cannot produce a tolerance of 0.00001 mm accuracy. Therefore most of the error occurs
between where GCPs are defined and the true values of GCPs with respect to the frame.

Space intersection uses the exterior orientation of all camera parameters calculated from
space resection. These six parameters for each camera are the inputs for intersection
calculation of a stereopair.
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The inputs are compiled in the single_Intersection.m method and the outputs are produced
in space coordinates (X,Y,Z) with respect to the frame (Refer to Appendix B for sample
input). The iterative solution stops when the LSA becomes negligible or when it encounters

a set loop number. For instance, the diagram below shows a drone position near the center
of the frame.

Camera 3

Camera 4

Camera 1 Camera 2

Figure 18. Space Intersection: object close to the frame center

The expected position of the drone is an approximation made by measuring the (X,Y,Z) of
the drone with respect to the frame system. This is the value of expected output. The

measurement accuracy of the ruler has a value of + 0.5 cm or + 5.0 mm plus the error in the
system frame.

Table 13: Space Intersection Results: Iterative solution.

Cameras (1-3) Number of Space Coordinates
Image Intersection Iterations (X,Y,Z) (m]
Expected Output 0 (0.40, 0.40, 0.0625)
Negligible LSA 7 (0.4190,0.4115, 0.0915)
(LSA > 0.0000001)
Intersection Set Counter 20 (0.4190,0.4115, 0.0915)
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Figure 19. Convergence Analysis: LSA intersection coordinates convergences after 7 iterations.

After the image intersection is run, two outcomes occur: the LSA becomes negligible when
it meets the tolerance, or the programs runs 20 iterations. The negligible solution shows us
that the results converge after 7 iterations with a tolerance of 0.00001 mm (or 0.00000001
m) error. Therefore, after 7 iterations, the solution converges to tolerance and the iterative
process become unnecessary, by law of diminishing returns.

The output intersection values are subject to the error in the frame coordinate and the
residual from iterative solutions. Similar results were produced with the translated Python
code intersection.py. The iterative solutions are negligible since the system cannot produce
a tolerance of 0.00001 mm accuracy. Therefore most of the error occurs between where
GCPs are defined and the true values of GCPs with respect to the frame.

6.2 System Testing

System testing was performed to verify whether the U-TRACKR system is fit for its
intended purposes. The system was evaluated by verification tests which covered eight
areas. Overall, The U-TRACKR system passed 13 out of 15 test cases, and the failures are
explained below.
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Table 14: System Test Results

Test ID Results Description Future Improvements
FUNC-01 PASS Verify that each Raspberry Pi can connect to the None

same WiFi network as the main controller (laptop)

FUNC-02 PASS Verify the ability to establish an SSH connection from None
the main controller to each Raspberry Pi.

FUNC-03 PASS Verify the ability to stream the camera feed from the None
Raspberry Pi’'s to the main controller from each
Raspberry Pi’'s at the same time.

EUNC-04 PASS Verify that OpenCV software runs with no issues on None
main controller and identifies objects within the
frame.
FUNC-05 PASS Verify that the U-TRACKR program executes the None

Python script that determines the X, Y, Z coordinates
of the object within in the frame.

PER-01 PASS Check if each Raspberry Pi CPU usage meets the None
specified requirements.

PER-04 PASS Check if each Raspberry Pi stream bitrate meets the None
specifications.

MTBF-01 FAIL Determine the mean time before failure of the Perform error handling to prevent
U-TRACKR system while running for at least 8 hours. exceptions regarding matrix
calculations in intersection.py.

ENV-01 FAIL Determine the U-TRACKR program is functional Use machine learning models by
within a specific lux threshold training the model to accurately detect
the object in low light without the need
of markers.
REL-01 PARTIAL PASS  Check if the U-TRACKR program will not crash if one Perform error handling in the case
or more of the Raspberry Pi camera breaks down. where one camera breaks down. Stop

the system at the point where less than
2 cameras are operating, or the 2
cameras remaining are perpendicular to
each other (non-stereopair).

REL-02 PASS Verify the accuracy of the position calculated by the None
U-TRACKR program.

COM-01 PASS Determine that the U-TRACKR program can identify None
objects using the full range of values (ex. HSV
colours)
POR-01 PASS Determine the level of ease to apply the U-TRACKR None

program to other hardware applications.

BVT-01 PASS Determine the U-TRACKR program is functional None
when tracking an object at the farthest distance
specified by the requirements.

BVT-02 PASS Determine the U-TRACKR program is functional None

when tracking an object at the shortest distance
specified by the requirements.
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Figure 20. U-TRACKR System Testing Diagram

7.0 Deliverables And Setup

7.1 Hardware Deliverables

The hardware deliverables for U-TRACKR consist of the following components:

Table 15: List of hardware components and a description of their uses

Item Description

Raspberry Pi Zero W Starter
Kit with Case (x4)

Controls and processes information from the camera modules.

Raspberry Pi Camera Module  Takes high-definition videos in low-latency time for computer vision
V2 (x4) based tracking.

Tracks, and locates the moving object(s) programmatically using image
sequences. An ideal processing system would have a hardware
configuration similar to the following:

Primary Processing System e Operating System: Windows 10 Home 64-bit (10.0, Build
(PC) 15063)
e Processor: Intel(R) Core(™) i7-7700HZ CPU @ 2.80GHz (8
CPUs)

e Memory: 16384MB RAM
e Display Adapter: Intel(R) HD Graphics 630

Holds the camera modules in opposite and equidistant positions at each
corner of the frame. An ideal frame would have an equal side length of

AW around 90cm and be sturdy enough to hold each Raspberry Pi Zeros
without disrupting the position and angle of the camera.
Powers the Raspberry Pi Zeros during operation of the U-TRACKR
Power Supply for the system.An ideal power supply system would be able to reach each
Raspberry Pi Zeros corner of the frame without disrupting the position and angle of each

Ccamera.
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7.2 Software Deliverables

The software deliverables for the Primary Processing System for U-TRACKR consists of the
following components:

Table 16: List of software necessary for the project and a description for each program

Python 2.7.13

OpenCV 3.4.0

Item Description

Python is chosen as the primary programming language due
to its various libraries in image processing and computer
vision. It is also specifically useful in interacting with the

Raspberry Pi programmatically.

OpenCV is chosen as the primary software framework used
to track object due to it’s free availability in commercial and
educational use, as well as its support with Windows and
Python interfaces.

MATLAB is used to perform camera calibration to obtain the

MATLAB 9.3 interior camera orientation parameters, and to run the space

U-TRACKR Codebase

7.3 Setup

resection algorithm used for position calculation.

Used to run the U-TRACKR system. This could be found in
the following GitHub link:

https://aithub.com/azkevin/U-TRACKR

The following steps detail how to setup the environment for both the Raspberry Pi
microcontrollers and the primary processing system.

It is assumed that the hardware deliverables are obtained, and the software deliverables are
installed on the primary processing system. It is assumed that all Raspberry Pi Zero
microcontrollers are powered on, and are connected to the internet using Wifi or ethernet.

1. Configure each Raspberry Pi Zero

1.1. Setup the Camera Module on each Raspberry Pi Zero

1.1.1.

1.1.1.1.
1.1.1.2.

1.1.2.

1.1.2.1.

1.1.3.

1.1.3.1.

Upgrade the hardware firmware of the Raspberry Pi Zero by running the

following commands on the terminal window:
“sudo apt-get update”

“sudo apt-get upgrade”

Enable the Camera Module on the Raspberry Pi Zero by following the steps:
Run “sudo raspi-config” on the terminal window > 5 Enable Camera >
Enable > Reboot

Once rebooted, confirm that the camera is detected by running the following

command and ensuring both values are 1.

“vcgencmd get_camera”

35

YORK

U

UNIVERSITE
UNIVERSITY



https://github.com/azkevin/U-TRACKR

U-TRACKR

uuuuuuuuuu

1.2. Enable SSH on each Raspberry Pi Zero
1.2.1. Enable SSH on the Raspberry Pi Zero by following the steps:
1.2.1.1. Run “sudo raspi-config” on the terminal window > Select Interfacing
Options > SSH > Yes > Ok > Finish

2. Running U-TRACKR

2.1.  Obtain and replace the IP Address of each Raspberry Pi Zero
2.1.1.  Run the following command on the terminal window: “ifconfig”
2.1.2.  Obtain and save the IP Address by looking at “wlan0 > inet addr”
2.1.3. Replace the IP Addresses found in release/main.py with the corresponding
ones found during this step.

2.2.  Run the Space Resection Algorithm to obtain initial parameters

2.2.1. Capture images from each Raspberry Pi Zero by running “raspicam -o
image.jpg”

2.2.2.  Obtain the pixel coordinates of each point on each image. Replace the values
in cam_Pixel_Coords in release/single_photo_resection.m

2.2.3.  Estimate the camera position ground coordinates and replace the values in
x0, y0, and z0 in release/single_photo_resection.m

2.2.4.  Run release/single_photo_resection.m and replace the values of
cam_Ground_Control_Coords, omega, phi, kappa in release/intersection.py for
each image.

2.3. Run U-TRACKR by running “python main.py” under the release folder on the
terminal window.

8.0 Project Management and Finances

8.1 As-Built Project Schedule

A breakdown of scheduled tasks and resources can be found below. This can also be seen
using Microsoft Project with various views by following this link.
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Task Name ./ Duration . Start . Finish . Predecessors v
1 <U-TRACKR 194 days Mon 10/16/17 Fri4/27/18
2 - Preliminary Design Review (PDR) 8 days Mon 10/16/17 Mon 10/23/17
3 PDR Draft 2 days Mon 10/16/17 Tue 10/17/17
4 Meeting with industry advisor 1 day Wed 10/18/17 Wed 10/18/17 3
5 PDR Final Report S days Thu 10/19/17 Mon 10/23/17
6 « Critical Design Review (CDR) 42 days Tue 10/24/17 Mon 12/4/17
7 Prototyping (Microcontroller and frame setup) 15 days Tue 10/24/17 Wed 11/8/17
8 Prototyping (Development of a preliminary object tracking 17 days Wed 11/8/17 Sun 11/26/17 7
program)
CDR Draft 1 day Sun 11/26/17 Tue 11/28/17
Prototype review with technical supervisor 1 day Wed 11/29/17 Wed 11/29/17 9
CDR Final Report 5 days Thu 11/30/17 Mon 12/4/17 10
< Test Readiness Review (TRR) 64 days Mon 12/4/17  Mon 2/5/18 6
Microcontroller, camera, and frame setup 14 days Mon 12/4/17 Sun 12/17/17
Semester break 11 days Sun12/17/17  Thu 12/28/17
15 Development of the primary object tracking algorithm 13 days Thu 12/28/17  Thu1/11/18
16 Design review with technical supervisor 1 day Fri1/12/18 Fri1/12/18 13;:15
17 Design test plan for full system testing 8 days Fri1/12/18 Tue 1/23/18 16
18 TRR Draft 6 days Tue 1/23/18 Fri 2/2/18 17
19 TRR Final Report 3 days Sat 2/3/18 Mon 2/5/18 18
20 «Test Review (TR) 42 days Mon 2/5/18 Sun 3/18/18 12
21 Creation of all Python automated tests 10 days Mon 2/5/18 Wed 2/14/18
22 Running all automated tests 6 days Thu 2/15/18 Tue 2/20/18 21
23 Running all manual tests 16 days Wed 2/21/18 Thu 3/8/18
24 TR Draft 5 days Fri 3/9/18 Tue 3/13/18 23,22
25 TR Final Report 5 days Wed 3/14/18 Sun 3/18/18 24
26 «Final Project Documentation (FPD) 29 days Sun 3/18/18 Sun 4/15/18 20
27 Final changes to system design based on testing 13 days Sun 3/18/18 Fri 3/30/18
28 FPD Draft 7 days Fri 3/30/18 Fri 4/6/18 27
29 FPD Report 9 days Thu 4/5/18 Sun 4/15/18 28
30 «Product Release Presentation/Exhibits 13 days Sun 4/15/18 Fri4/27/18 26
31 Demo materials preparation (poster, videos, shirts, etc) 6 days Sun 4/15/18 Fri 4/20/18
32 Demo preparation practice 7 days Fri 4/20/18 Fri 4/27/18
33 Demonstration 0 days Fri 4/27/18 Fri4/27/18 32,31

Figure 21. Gantt Chart View of the Project Schedule

8.2 Work Breakdown Structure

A product-based work breakdown structure can be found below.
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Figure 22. Work Breakdown Structure of U-TRACKR
8.3 Cost Analysis
8.3.1 Prototype
Table 17: Prototype cost
Item Cost Description
Raspberry Pi Zero W Starter Kit with (549.99 * 2) = Controls and processes information
Case (x2) $99.98 from the camera modules.
. $30.99 *2) = Takes high-definition videos in low
Raspberry Pi Camera Module V2 (x2 ( - .
D Y (x2) $61.98 latency for vision based tracking.
PVC Pipes $26.40
T-Connectors (x8) $15.04
Frame components to hold the camera
45° Connectors (x16) $25.28 modules in opposite and equidistant
positions.
Dust Masks $2.50
Spray Paint $11.99

PROTOTYPE COST: $243.17
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https://www.amazon.ca/CanaKit-Raspberry-Wireless-Starter-Official/dp/B0727VRM14/ref=sr_1_1?ie=UTF8&qid=1512401512&sr=8-1&keywords=CanaKit+Raspberry+Pi+Zero+W+%28Wireless%29+Starter+Kit+with+Official+Case+%28CA%29
https://www.amazon.ca/CanaKit-Raspberry-Wireless-Starter-Official/dp/B0727VRM14/ref=sr_1_1?ie=UTF8&qid=1512401512&sr=8-1&keywords=CanaKit+Raspberry+Pi+Zero+W+%28Wireless%29+Starter+Kit+with+Official+Case+%28CA%29
https://www.raspberrypi.org/products/camera-module-v2/
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Table 18: Final cost
Item Cost Description
Raspberry Pi Zero W Starter Kit with (549.99 * 4) = Controls and processes information
Case (x4) $199.96 from the camera modules.
. ($30.99 * 4) = Takes high-definition videos in low
Raspberry Pi Camera Module V2 (x4) $123.96 latency for vision based tracking.
Hillman Plated Steel Slotted Angle (x12) $160.56
Screws (x50) $13.77 A sturdy steel frame to hold the camera
modules in opposite and equidistant
Washers (x50) $6.56 positions.
Nuts (x50) $4.65
Anker PowerLine Micro USB Cable (10ft) $40.00 Used to power the microcontroller
(x4) within a 10ft distance.
Anker 40W/8A 5-Port USB Charger $29.37 Power adapter to connect the four
PowerPort 5 micro USB cables.

FINAL DESIGN COST: $578.83

9.0 Recommendation

9.1 Object Detection Using Machine Learning

Object detection is one of the limiting factors in this project as they define the 3D space
coordinate in which the object reside. The object detection process in this project is confined
by a single colour space or a single ArUco 6X6 bits marker. This can be a problem when it
comes to a system with multiple colour space and multiple ArUco markers.

Some of the solutions provided by open source software libraries such as TensorFlow and
Darknet is to use machine learning algorithm to detect objects on an image. TensorFlow is a
Google provided object detection API that identity object within an images. The machine
learning model takes input image from the user and identify these objects while giving a
percentage of confidence level. Similarly, another real-time object detection APl is Darknet’s
YOLO. YOLO or “You Only Look Once”, is a open source neural network written in C which
trains a machine learning model that detects object given the input images.

9.2 Hardware Improvements

The hardware used in this project were chosen for its cost efficiency, programmability and
availability. For instance, the Raspberry Pi and the Camera Module V2 are used as they are
easily programmable and cost efficient. But through iterations of testing and data
processing, it becomes apparent that the Pi and camera module has its limitations.
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Figure 23. Object detection API: People flying kites, TensorFlow (left) and a dog with a frisbee, Darknet YOLO (right).

For instance, the camera module has a resolution limitation of 3280 x 2464 for still image
and 1920 x 1080 at 30 FPS. This is an issue because the position of an object is dependent
on the pixel resolution of and pixel accuracy. Higher resolution means better pinpoint
location of the object’s position. With the implementation of better cameras comes better
resolution. The pixel accuracy enhances and output results from image resection and image
intersection becomes better.

The Raspberry Pi is usually used for light computation projects. In the marker detection part
of the project, a continuous function of the OpenCV software is needed to detect object and
recognize the colour space or ArUco markers. This continuous function requires a lot of
computation power, and a Pi is not suited to stream constantly at maximum resolution. This
made the Pi overheat and shutdown. With a bigger budget, a better microcontroller
invested to handle the streaming issues at higher resolution.

Another case that occurred during the data processing and data detection part of the
project has to do with the Raspberry Pi wireless transfer of data. The Pi transfer at a
maximum bit rate of 25 Mbps, this means it is impossible to transfer stream at 1080p and
30FPS through the Pi via WiFi. To get a faster bit rate, this means the Pi must avoid using
wireless methods and instead use wire transfer of data. The wire transfer will have a
limitation of the transfer speed of the USB 2.0 port (at 480 Mbps) built on to the Pi module.

9.3 Software Recommendations

The image resection and image intersection part of the iterative solution uses a written
MATLAB code which derived from the collinearity equation. This can be tedious as it
requires more runtime and takes up more resources as the code runs over a long period of
time. To resolve this, the OpenCV provides a Camera Calibration function and 3D
reconstruction function specifically its solvePnP(), and calibrationMatrixValue() methods.
This function can be used to find the intrinsic parameter , image point, object point where
the initial camera position (X,Y,Z,)as well as object space coordinate (X,Z,Y) with respect to
the camera system. To find the corresponding frame coordinate, a transformation must be
performed with respect to the camera frame. This way, the function eliminates the need for
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https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#bool%20solvePnP(InputArray%20objectPoints,%20InputArray%20imagePoints,%20InputArray%20cameraMatrix,%20InputArray%20distCoeffs,%20OutputArray%20rvec,%20OutputArray%20tvec,%20bool%20useExtrinsicGuess,%20int%20flags)
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iterative process from calculating the resection and intersection, instead, a transformation
process takes its place.
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Figure 24. Camera Calibration and 3D reconstruction, solvePnP: describes the relationship between real-world coordinate
(represented by the checkerboard and ArUco marker) to space coordinate in direction (X ,,Y,.Z, ).

10.0 Conclusion

The proposed project was to incorporate the use of a local server to stream and process live
video feed. The system that was delivered incorporates the use of a main controller that
processes the live video feed to determine the position of an object with respect to the
defined area. The delivered system provides a program, that is convenient for users to
execute, and integrates the use of multiple components and other programs. The entire
system was thoroughly tested to account for and satisfy all requirements stated in previous
documents. Overall, the U-TRACKR system is able to carry out the specified functionality,
and can be further expanded to control and coordinate the movements of multiple objects to
widen the range of stakeholders.

10.1 Lessons Learned

In conclusion, our team polished the skills necessary for starting a career within the
engineering industry. The team followed a variation of the waterfall development cycle and
became familiar with the elements of the engineering design process which includes
problem definition, specifications, background research, solution formulation, analysis,
testing, and communication.

Furthermore, the team learned the basics in photogrammetry, space resection, and space
intersection in order to implement the project. The team was able to apply the engineering
knowledge, professional engineering practices, and project management skills to solve
real-world problems. Most importantly, the team learned how to work efficiently together,
resolve any conflicts during the course, and act with responsibility and competence as is
necessary in a professional environment.
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12.0 Appendices

Appendix A: Space Resection

Table 19: Image Resection Input. Ground coordinates with preset space coordinates and measured pixel coordinates at a

resolution of 3280X2464.

Ground Control Coordinates Space Coordinates Pixel Coordinates

(X,Y,Z) [m] (XeuerYonel) [PixElS]
1 (0.45,0.18, 0) (2122, 761)
2 (0.63,0.27,0.061) (1628, 641)
3 (0.72,0.45, 0) (1337, 849)
4 (0.63, 0.63, 0.061) (1157, 1252)
5 (0.45,0.72, 0) (1344, 1657)
6 (0.27, 0.63, 0.062) (1648, 1854)
7 (0.18,0.45, 0) (2139, 1711)
8 (0.27,0.27,0.061) (2240, 1238)
9 (0.72,0.18, 0.146) (1526, 263)
10 (0.72,0.72,0.145) (806, 1260)
11 (0.18,0.72,0.146) (1535, 2254)
12 (0.18,0.18,0.144) (2554, 1237)
13 (0.45, 0.45, 0.146) (1527, 1246)

Appendix B: Space Intersection

Table 20: Image Intersection Input. exterior orientation and Image coordinate of the object.

Cameras Exterior Orientations Image coordinates
(X.Y,Z,w,p,x) [m, rads] (%,y) [mm]
1 (0.0616, 0.0706, 1.0446, 0.3630, -0.35611, -2.3040) (0.0756, -0.0039)
2 (0.7966, 0.0817, 1.0294, 0.3729, 0.35630, -0.8475) (0.0174,-0.1182)
3 (0.7850, 0.7972 1.0223,-0.3631, 0.3145,-5.3319) (-0.0902, -0.0106)
Intersection (0.4190, 0.4115, 0.0915)
(X\Y,Z) [m]
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13.0 Project Self-Evaluation

Table 21. Self-Evaluation

RUBRIC CRITERION FOR FINAL
PROJECT DOCUMENTATION

Rubric 1:

Explain the importance of
compliance with the Professional
Engineers Acts and other relevant
laws, regulations, intellectual
property guidelines and contractual
obligations and follow best
practices

Rubric 2:
Employ strategies for reflection,
assessment and self-assessment of

team goals and activities in
multidisciplinary settings

Rubric 3:

Adhere to written instructions in a
professional context

Rubric 4:

Evaluate critical information in
reports and design documents

Rubric 5:

Appraise possible improvements in
the problem solving process

Rubric 6:

Justify the strength and limitations
of the solution and make
recommendation for possible
improvements

SELF-EVALUATION
RANKING

Level 3: Adequately explains
the importance of compliance
and other relevant laws,
regulations, intellectual
property guidelines and
contractual obligations and
follow best practices

Level 4: Employs appropriate
strategies for reflection,
assessment and
self-assessment of team goals
and activities in
multidisciplinary settings

Level 4: Completes tasks as
instructed

Level 4: Evaluation of all
critical information in reports
and design documents; mostly
to a professional standard

Level 4: Evaluates possible
improvements in the problem
solving process

Level 4: Justifies the strengths
and limitations of the solution;
makes recommendations for
possible improvements
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OUR JUSTIFICATIONS

Section 3.3.3 goes over all regulatory
requirements that were met during the
timeline of this project, as well as the
importance of each regulation.

Section 10.0 goes over the conclusions
and lessons learned from the project,
which includes a reflection on possible
improvements.

The document goes over all major
sections detailing the project, as
indicated in section DID-2 of the
governing document.

Sections 4.0 and 5.0 explain all the
critical information and engineering
design processes in the creation of this
system.

Section 9.0 explains all possible and
realistic improvements to the system in
both hardware and software aspects.

Section 3.4 explains all the limitations,
constraints, and improvements of the
U-TRACKR system, and makes
recommendations on possible
improvements.
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